导热增强型相变材料温控试验

来源 :2012年先进功能复合材料技术重点实验室暨中国航天第十三专业信息网2012年度学术交流会 | 被引量 : 0次 | 上传用户:tszhzhc159
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  为满足高超声速飞行器舱内温度要求,提出了在舵轴热短路区域使用相变材料进行热耗散的方案。通过开展导热增强型相变材料温控试验,获得了不同试验方案对舵轴及周围金属壳体的降温效果。结果表明,导热增强型相变材料由于良好的导热性能,能够很好地发挥相变吸热能力,对降低舵轴热短路区域的局部高温具有显著效果;金属壳体内、外同时使用低温和中温相变装置,能够将舵轴周围金属壳体温度控制在允许工作温度范围内(150℃)。本研究可为飞行器舵轴温控设计提供指导。
其他文献
采用CVD法,1050℃在三维针刺C/C-SiC复合材料表面制备SiC涂层,研究稀释气体与载气流量比分别为4∶1和2∶1制备条件下涂层的晶体结构、表面和断面的微观形貌,对比了涂层前后C/C-SiC复合材料的抗烧蚀性能。结果表明:稀释气体流量降低其制备的SiC涂层更加平整致密,与基体结合程度更好,沉积产物均为单一的β-SiC结晶相。在600 s的氧化烧蚀下,两种流量比条件下制备CVD-SiC涂层的C
对玄武岩纤维表面进行酸刻蚀处理并浸泡铝锆偶联剂溶液,探讨酸浓度、酸处理时间和偶联剂浓度对玄武岩纤维表面偶联剂吸附量的影响。通过FTIR和XPS分别定性和定量地分析纤维表面官能团及C、O、Si、Zr元素的变化来表征纤维表面偶联剂的吸附量。结果表明:三因素对纤维表面偶联剂吸附量的影响程度由大到小依次为酸浓度、偶联剂浓度和酸处理时间。随着酸浓度升高,纤维表面偶联剂吸附量呈现出先减小后增大的趋势;酸处理时
以自制的聚硼硅氮烷(P-SiBCN)为基体聚合物利用前驱体浸渍裂解技术(PIP)制备了二维碳纤维增强SiBCN陶瓷基复合材料,并对其力学性能进行了初步研究。经8次浸渍-裂解,所得复合材料室温弯曲强度为334 MPa,800℃/氩气条件下弯曲强度367 MPa.该复合材料未经抗氧化防护处理情况下,800℃静态空气中氧化3h后,强度保留率约为60%。
为了降低复合材料壳体封头区域的应力集中,提高壳体整体性能,对复合材料壳体薄弱区进行补强以及采用何种方法进行补强是关键问题。本文以碳纤维Φ150 mm复合材料壳体为研究对象,以理论分析和有限元分析为依据,分别采用碳布补强和纤维缠绕补强对壳体前后封头及赤道附近位置进行补强。试验结果表明:纤维缠绕补强效果明显好于碳布补强,壳体特性系数由40.3 km提高到48.5 km,应力平衡系数提高到0.95,纤维
利用非稳态阶跃平面热源法对SiO2气凝胶的热参数进行了高温实验研究,获得了不同温度和压力条件下SiO2气凝胶的热导率、热扩散率以及比热容等。结果表明,SiO2气凝胶800℃的热导率比室温增大约62%。在相同气压且低于600℃时,其热导率受比热容影响,而在高于600℃时,则受热扩散率影响;在相同温度且高于10 kPa时,热导率亦受热扩散率影响。
以铁氧体复合吸波材料为例,概述了吸波材料发展趋势;介绍了两种新型隐身材料(碳纳米管复合吸波材料和左手材料)的发展现状,并对中国吸波材料的发展提出一些建议。加强碳纳米管复合吸波材料的制备、结构与性能优化及设计等方面的基础研究;政府应加大力度,注重国内光电对抗技术的发展,培养该专业创新型人才;尤其注重宽频段吸波材料研发。
介绍了C/C复合材料在日本固体火箭发动机喷管的应用情况,主要包括卫星远地点助推发动机用螺旋形状碳布铺层的2D-C/C扩张段、固体助推器及固体运载用3D-C/C喉衬。2D-C/C扩张段采用黏胶丝基碳纤维成型,M-V固体运载一级发动机C/C喉衬采用碳纤维三向正交圆筒编织结构,热等静压-石墨化致密,外径Φ1100 mm,密度达1.95 g/cm3.C/C复合材料在固体及液体火箭发动机喷管延伸出口锥的应用
利用XRD对超高温陶瓷粉进行分析,从衍射谱图能得到各物相组成为ZrB2、SiC、ZrO2,并且采用全谱拟合法对各物相进行定量计算。结果显示,定量分析结果的绝对误差小于2%,全谱拟合分析方法能准确地对超高温陶瓷的物相进行定量分析。
介绍了用于毫米波段的介电性能测试的高Q腔法和准光腔法的原理及物理模型,并分别对其进行了仿真分析,建立了相应的测试装置,进行了空腔和石英玻璃的测试。结果表明,准光腔法要比高Q腔法在品质因数、可分辨的频点、样品尺寸、测试精度等方面更有优势。
采用四甲基四乙烯基环四硅氧烷(TMTVS)与四甲基环四硅氧烷(TMS)通过阳离子开环聚合反应制备了含Si—H及Si—CH=CH2官能团的聚硅氧烷。用红外、核磁、凝胶渗透色谱及热重分析对该聚硅氧烷进行了表征,结果表明其结构与设计相吻合,其分子量、黏度及Si—H、Si—CH=CH2的比例可以通过改变原料比例来调节。这种新型聚硅氧烷用作SiOC陶瓷前驱体具有低黏度、高陶瓷产率等特点。