修饰层可去除的透氢钯膜的制备及表征

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:genglb119
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  采用浸渍-提拉法在多孔氧化铝表面涂覆一层聚乙烯醇(PVA)有机修饰层,并通过化学镀法在经过PVA修饰的载体表面制备钯膜.利用高温热处理过程能够将钯复合膜中PVA修饰层完全移除.利用扫描电子显微镜(SEM)和电子能谱(EDX)对钯复合膜的形貌、结构和表面元素分布进行了分析,并在623 K-773 K范围内对所制备的钯复合膜进行气体渗透测试.研究结果表明,多孔氧化铝载体经PVA修饰后,表面平整、光滑,所制备的钯膜表面致密,无明显缺陷和针孔.在773 K、100 kPa下,氢气渗透通量可达为0.238 mol·m-2·s-1,理想气体分离因子α(H2/N2)达到956.而且,钯膜在623 K-773 K连续操作160 h,其透氢性能保持稳定.
其他文献
随着社会的发展,化石燃料的大量消耗带来的能源短缺和环境问题日益严重,开发和利用可再生能源(如风能和太阳能)受到广泛关注。然而风能和太阳能具有不连续、不稳定和不可控的特点,因此,需要大规模储能技术实现可再生能源连续、稳定的输出。全钒液流电池具有安全性好,环境友好以及高性能等优点,已经成为大规模储能的首选技术之一。隔膜是全钒液流电池的主要部件之一,主要起着隔离两侧钒离子和传递质子形成电池回路的作用。隔
硫酸钾是一种无氯钾肥,尤其适合忌氯或耐氯性低的作物施用,通常由氯化钾与其它硫酸盐或硫酸转化制备而成.传统的制备方法存在能耗大、污染严重、成本低等局限性.本文通过两种电渗析方法制备硫酸钾:其一是四隔室电置换法,实验原理如图1所示,通过考察电流密度、硫酸铵对氯化钾的摩尔比等因素对转化过程的性能影响,结果显示随着电流密度从10 mA/cm2增加到25mA/cm2,操作时间从135 min下降至55 mi
全钒液流电池可用于风能、太阳能发电等需要克服电能非稳态特性的大规模储能的领域,隔膜是该电池的关键材料。全氟磺酸型膜离子传导性高、化学稳定性好,但价格昂贵,阻钒性能差,成为全钒液流电池的商业化应用的瓶颈,迫切需要开发低成本的具有优良综合性能的替代膜。以聚砜、聚苯砜等传统商业化芳基聚合物为基材的膜材料溶胀度大,机械强度和稳定性欠佳,难以满足全钒液流电池用高离子传导性、高稳定性膜材料的需求,需要发展新型
全钒液流电池利用不同价态钒离子的可逆电化学反应,完成电能与化学能相互转化,实现大容量蓄电储能功能。适用于调节风力、光伏等可再生能源发电的不稳定电能输出,以及作为电能储存装备用于构建分布式电力能源系统。为了阻隔不同价态钒离子跨膜扩散导致的自放电,并通过氢离子渗透连接内电路,现有的全钒液流电池研发过程,通常使用离子交换膜,利用“静电排斥”效应实现氢离子与钒离子之间选择性渗透。 由于离子交换基团在钒电解
采用电化学方法在水相中合成了一种新型的电活性铁氰化铁(FeHCF)-聚吡咯/聚苯乙烯磺酸(PPy/PSS)电控离子选择渗透性(ESIP)膜,通过运用一种新型的原位电势响应离子传输系统对低浓度态下的Ca2+、Mg2+进行有效的去除。在这个系统中,通过调节ESIP膜的氧化还原状态来进行对目标离子的吸附/释放,结合一个恒电位外电场对ESIP膜施加脉冲电位,实现对目标离子的连续选择性渗透分离。在不锈钢丝网
碱性膜燃料电池氧还原过电位低,可用非贵金属催化剂,具有成本上的优势,但碱性膜高温条件下稳定性低、离子基易降解.针对此问题,我们创制了咪唑胍双共振离子化聚砜膜(图1),该结构中的咪唑和胍官能团都具有电荷离域作用,使离子基的电荷密度降低,有利于弱化氢氧根的进攻.同时,咪唑胍可在膜内构筑交联结构,有助于抑制膜溶胀和离子基降解.所制备的咪唑胍聚砜膜的室温电导率可达15mS/cm,经3M NaOH处理10天
全钒氧化还原液流电池于1984年首先由新南威尔士大学的研究者Skyllas-kazacos提出,其优点包括可深度充放电、循环寿命长、相应时间短、价格低廉等,是一种很有发展潜力的大型储能装置,可以作为太阳能和风能等可再生能源的储存[1]。作为钒电池的关键材料之一,离子交换膜的作用是隔绝正负极的电解液的同时允许特定离子通过[2]。相比阳离子交换膜,阴离子交换膜具有良好的阻钒性能但面电阻较大。而两性离子
会议
以2,2-双(3,4-二羧基苯基)六氟丙烷二酐(6FDA)作为二酐单体,2,4-二氨基苯磺酸锂盐(MPDSALi)为二胺单体,采用溶液共缩聚方法合成了含金属离子的聚酰亚胺(6FDA-MPDSALi),该聚酰亚胺能溶于DMF、DMAc、NMP等极性非质子溶剂中,具有较好的成膜性.测试了N2、 O2、 CH4、CO2四种气体在该聚酰亚胺致密膜中的渗透性能.结果 显示,6FDA-MPDSALi具有优异的
低浓度的聚乙烯亚胺(PEI)水溶液在商业化的聚酰胺膜表面静电单层自组装,制备出同时具有高CO2渗透速率和高CO2/N2选择性的二氧化碳促进传递膜,自组装后,不需要任何后处理,膜可直接用于进一步的渗透实验中.影响改性膜性能的主要因素有进料气体压力,PEI溶液浓度,PEI的pH值以及改性泵压.实验结果表明,在不同进料压力(0.1-0.5MPa)下,当PEI浓度为50mg/L,PEI溶液pH为8-9,改
采用9,9-双(4-氨基苯基)芴和对苯二甲醛作为聚合单体缩聚制得一种具有可溶性的芴基型聚希夫碱.将芴基型聚希夫碱作为前驱体,利用其高温热交联的特性制备出一种具有笼型拓扑结构微孔的聚希夫碱气体分离膜.采用傅立叶变换红外光谱仪、热电X射线光电子能谱仪、核磁共振谱仪、扫描电子显微镜和X射线衍射仪对聚希夫碱微孔膜的结构和形貌进行了表征,膜材料的微孔特性采用全自动比表面积及微孔物理吸附仪进行分析,并深入研究