【摘 要】
:
地震波动方程数值模拟作为一种常用的地球物理研究方法,近年来,已经取得了广泛的研究成果。随着传统简单构造的油气勘探开发区域逐渐被找到,油气勘探需要向着更加精细更加复杂更深层次区域推进,因此需要更高精度更高分辨率的模拟方法。有限差分法由于其数学原理简洁直观、算法成熟,在地震波动方程数值模拟中得到了广泛的应用。为了避免传统方法为保证模拟低速区域的计算精度而全局采用细网格造成的高速区过采样,同时为了节约计
论文部分内容阅读
地震波动方程数值模拟作为一种常用的地球物理研究方法,近年来,已经取得了广泛的研究成果。随着传统简单构造的油气勘探开发区域逐渐被找到,油气勘探需要向着更加精细更加复杂更深层次区域推进,因此需要更高精度更高分辨率的模拟方法。有限差分法由于其数学原理简洁直观、算法成熟,在地震波动方程数值模拟中得到了广泛的应用。为了避免传统方法为保证模拟低速区域的计算精度而全局采用细网格造成的高速区过采样,同时为了节约计算机内存,以提高计算机计算效率,本文采用了交错网格的变网格有限差分法数值模拟方法。即对模拟区域剖分成不同的网格大小,在低速区采用较细的空间网格大小,高速区采用了按比例倍数增加的较粗的空间网格大小。不同于传统的变网格直接对网格变化区域进行插值的方法,本文采用了能量守恒观点来对整个模拟区域的能量进行表征,保证在模拟过程中的能量守恒,并找到一种求解网格分界面虚点值参数的方法。这种方法既有物理学理论支撑,又能保证数值稳定性。本文在前人的算法基础上对这种方法进行研究,详细推导了能量守恒插值的实现原理。对能量守恒插值有限差分变网格数值模拟方法进行一维介质、三维介质的模型测试。对其模拟过程中的能量以及波场快照进行了对比。结果表明,能量守恒插值法有限差分数值模拟相较于传统插值法,能够很好地保证传播过程中的能量守恒,满足基本物理规律。在此基础之上,对震源不连续的情况也做了测试,以说明这种方法的优越性和广泛适应性。本文最后得出结论,相较于传统直接插值法,能量守恒插值在理论上更加符合物理学规律,对其插值结果的研究不仅限于数值模拟的结果而是上升到理论高度,比传统方法要更加稳定和更加具有适应性。
其他文献
如今伴随地球物理勘探开发技术的蓬勃发展,波形分类技术作为地下构造解释和储层预测的重要手段已引起了处理解释人员的广泛关注。同时,中国油气复杂的工程地质环境也对勘探精度提出了更高的要求。不同于叠后地震数据,叠前地震数据量级大维度高,其包含的地下地层结构信息也更加丰富。使用传统的处理方法,极易引起维度灾难,导致分类结果不准确等问题。另外,由于工区的地震资料非常稀少且勘探采集过程中不可避免地会产生误差等随
经过50余年的开发,港东二区已经进入高含水率、高采出率的“双高”阶段。港东地区构造复杂,断层发育、砂体横向变化快。现有开发方案主要依据地质、录井、测井和开发动态等信息,地震数据的应用不是十分充分。因此,如何在油田开发过程中深度挖掘和充分利用地震数据所包含的构造信息和物性信息是本文的核心研究内容。围绕上述目标,本文开展了港东油田精细构造解释和储层预测的研究工作。具体内容包括:首先,利用地震可视化解释
基于横波震源的九分量多波地震技术是近年来国内外油气勘探行业迅速发展的前沿技术,在非常规和复杂油气藏勘探方面具有巨大的优势和潜力。但是,地震横波的传播机理和正演模拟方法需要进一步地完善和发展。本文首先以一阶应力-速度方程以及弹性波场理论为基础,实现了纵波震源、横波震源、垂直力源以及水平力源等多种震源的数值模拟,并详细的分析了不同震源激发的弹性波场特征;其次,结合标准交错网格(SSG)实现了各向同性(
砂岩储层的地震波速度受多种因素的影响,其中岩石孔隙结构是一个最重要的因素。对于致密砂岩而言,其孔径与孔道的关系与高孔隙砂岩不同,孔隙结构对纵横波速度的影响还很少研究。本文针对位于沙溪庙组致密砂岩储气层九口井中43块岩芯样品,利用覆压条件下的孔-渗测试、薄片鉴定的方法,分别得到样品颗粒、矿物、孔隙度、渗透率等属性特征,用CT扫描技术提取样品孔隙结构参数,结合超声波透射法测试样品不同围压下横纵波速度,
地震相分析是石油勘探过程中一项重要技术,可以作为地质环境的推断依据。传统方法是通过地震数据参数之间的关系作为判别手段,包括振幅、极性、反射丰度、层速度等,在数据处理过程中,也会因为各种处理方法自身的原因造成精度下降。叠前地震信号包含的信息更为丰富,论文选用叠前数据结合神经网络和机器学习方法对地震相分析进行研究。叠前地震信号信息量大,数据维度高,直接用来聚类分析计算量太大,结果不够精确。本文使用神经
随着人们对油气资源的需求逐渐扩大,页岩油气逐渐受到人们的关注。地震AVO反演作为储层预测和流体识别的关键工具,可以有效地从地震响应数据中提取出岩石物性参数。传统的AVO反演方法假设地下油气储层为各向同性,通过反演的储层弹性参数判定储层类型。但是页岩油气储层通常表现显著的各向异性(垂直各向同性或VTI)性质,而各向异性的强弱可以很好的预测页岩储层、流体饱和度,因此采用相应的各向异性反演方法,可以获得
在地震勘探的过程中,通常使用地层的弹性参数对地下油气水储层进行区分,然而,随着探测精度要求提高,仅仅依靠地层弹性参数进行储层预测已经不能满足现实需求。地震波在地下介质中传播时,其振幅和相位受介质吸收衰减影响,不同地层的Q值也不尽相同,利用不同地层衰减值差异,与地层弹性参数相结合,可有效的区分储层和流体。为此,我们需要研究如何有效准确的估算出地下地层的Q值。基于这样一种需求,本文在阐述地震衰减理论基
近年来,能源消耗的增加和环境污染问题的日益严重,探索一种新能源来替代化石燃料已成为一个重要课题。氢燃料具有高能量密度和环保得特性,已显示出替代化石能源的潜力。电化学水分解产生氢气被认为是解决未来能源危机的一种有效的方法。析氢反应(HER)是工业电解水中一个重要的半反应。目前,用于电催化析氢反应的最佳固体催化剂是贵金属铂(Pt)。但是,Pt在地球上储量低,成本高,不适合大规模生产,这极大地限制了其商
通过地震反演常常可以获得地层岩性信息、孔隙流体信息以及储层物性信息等等,从而开展储层的预测。近年来勘探储层越来越趋向于薄层预测,因此具有高精度和高分辨率的非线性反演方法越来越重要。马尔科夫链蒙特卡洛(MCMC)方法作为一种非线性的概率反演方法,既避免了贝叶斯理论中复杂的边际积分问题,又可以得到比贝叶斯反演更为准确的后验概率分布以及最优解。本文首先进行了贝叶斯反演,在层状斑块饱和模型的基础上,通过粘
石墨烯材料的不断发展激发了人们对于新型二维(2D)无机层状材料的极大兴趣,例如磷烯、过渡金属碳和/或氮化物(MXenes)和渡金属二卤化物(TMDs)等,以弥补现有材料的缺陷或提供在其他材料中找不到的优异性能。当这些块状无机层状材料通过化学蚀刻、Li+/K+插层或超声处理等手段转换为零维(0D)材料形式(即二维量子点(以下简称2D-QDs),横向尺寸范围1-100nm,报道的多为<10nm)时,量