论文部分内容阅读
传统的超声波电源,特别是应用于超声波生物处理装置上,通常是工作在一个固定的频率、固定的功率上,这样就大大降低了超声波生物处理的效率。但是随着超声波换能器技术的不断突破,以及应用于工业控制的高性能DSP芯片的不断出现,使得采用数字化控制的宽频的超声波电源的设计与研究变得可行,从而大大地提高了系统的集成化。本文研究设计了基于DSP控制的宽频超声波电源,主要应用于超声生物处理系统。主控芯片选择的是高性能的32位浮点型的DSP芯片F28335。依据生物处理液的浓度检测,转换为电信号,并送入DSP,与总控上位机通讯来确定最优频率,然后通过DSP来实现换能器负载端的切换,使得超声波电源工作在最优频率,并通过采集负载端电流电压来实现频率跟踪。超声波换能器采用的是宽频率的超声波振子阵,通过对超声波振子阵的实时参数进行测量,计算出其调谐匹配的匹配电感和阻抗匹配的匹配变压器的变比。在电源设计方面,通过DC/DC、DC/AC两级电路调节实现了宽范围的变频变压的功能,从而实现宽频输出,功率可调的超声波电源的设计。前级DC/DC采用的是Buck开关电源,通过矩阵键盘给定电压到DSP,通过DSP来实现PWM占空比的可变输出,从而控制开关管的通断,实现母线电压的调节。后级DC/AC采用的是单相全桥逆变电路,在频率自动跟踪系统的设计方面,采用的是基于DSP的FUZZY-DDS控制,利用FUZZY控制进行频率的粗调,并且利用DDS芯片AD9833进行频率的精调,从而实现频率自动跟踪系统的精确控制。本文对整个宽频超声波电源进行了方案设计,并详细介绍了主要硬件电路的实现,包括整流滤波模块、Buck调压模块、逆变模块、采样电路、驱动电路等。设计了DSP的最小系统,介绍了EPWM模块的具体工作原理,并给出了系统的软件流程图。