柠檬酸盐在羟基磷灰石表面介导生物矿化的计算机模拟研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:guxleo3322
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为人体骨骼和牙齿中的主要矿物成分,羟基磷灰石(Hydroxyapatite,HAP)具有良好的生物相容性和机械性能,是优良的骨骼或牙齿修复材料,因此如何调控HAP的晶体生长备受关注。此外,人体中的柠檬酸根离子(Citrate ion,CIT)会富集在骨骼及牙齿处,在生物矿化过程中发挥着重要的辅助功能。因此,本文采用分子动力学(Molecular dynamics,MD)模拟方法研究多种与生物矿化相关的多肽在HAP表面的吸附行为及构象等,主要研究内容如下:1.采用MD模拟研究了CIT如何调控聚天冬氨酸(PASP)在磷酸钙溶液中的HAP表面的吸附行为。结果表明,归功于羧基基团和α螺旋结构,PASP可以作为离子螯合剂结合Ca2+并成为HAP矿化的模板。加入CIT后,所有体系的PASP的取向分布更窄并以“平躺”的取向吸附在HAP表面。这表明CIT可以作为桥接剂介导并稳定酸性多肽在HAP表面上的吸附。2.结合MD和拉伸分子动力学模拟方法揭示了在HAP层中的骨钙素多肽(Osteocalcin,OCN)的力学行为。模拟结果表明,HAP间隙的减小会使OCN在HAP表面不断发生界面键的形成与破坏,进而导致粘滑型运动。加入CIT后会显著增大牵引拉力,这是因为柠檬酸钙团簇的空间位阻效应及其钙离子与OCN的酸性氨基酸残基的结合。以上结果都导致了在HAP层中拉动OCN时的能量耗散更高。3.采用MD模拟并结合并行回火和准动力学算法探索了骨桥蛋白多肽(Osteopontin,OPN)在HAP表面的吸附行为。结果表明,组合算法可以极大地增加采样效率。其中OPNA因其净电荷为0而不能有效吸附到HAP表面,所以会在水溶液中保持较为紧凑的结构。而OPNB-OPNG的净负电荷较多,所以能更稳定地吸附到HAP表面。随着OPNB-OPNG中磷酸化丝氨酸(Sep)残基的个数的增减(由0增加到5),其回旋半径和构象变化也逐渐增大。此外,在蛋白或多肽的柔性部分修饰Sep能够维持其α螺旋结构;而适当增加Sep的个数则能显著增大当前片段的回旋半径与构象变化。本文从分子尺度揭示了生物矿化过程中柠檬酸盐与有机基质对HAP矿化的调节机理,能够为材料的仿生矿化及相关医学研究的发展提供理论指导。
其他文献
拓扑优化是一种以材料分布为设计变量,在满足给定的边界条件及其他约束的前提下,在整个设计域中寻找最优的目标函数对应的材料分布的一种功能强大的设计方法,目前已经在建筑结构、航空航天、机械工程等领域获得了很大的发展。流体在自然界中无处不在,是最常见的物质之一,渗透于人类的日常生活和生产。从2003年开始,拓扑优化被引入流体领域并在流体领域中实现了应用。参数化水平集方法是近年来提出的一种新颖的拓扑优化方法
豆浆是一款营养丰富的植物蛋白饮品,人们对健康的追求激发了家用豆浆机的设计与制造,家用豆浆机制备的全豆豆浆具有较高的蛋白含量、可溶性纤维素和硫胺素等营养成分。为优化全豆豆浆加工工艺、降低豆浆机制浆能耗和提高全豆豆浆的营养价值,本论文研究了漂烫工艺和糖醇的使用对豆浆稳定性和抗营养因子活性的影响。本文首先研究漂烫温度对豆浆稳定性和抗营养因子活性的影响。结果表明,90℃漂烫30 s可以显著降低豆浆的胰蛋白
随着传统化石能源枯竭、气候变暖等问题的日益凸显,大力发展清洁可再生能源开展新能源革命成为世界各国关注的焦点。对于分布式能源的接入,相比于传统交流微网,低压直流微电网具有线路损耗小、供电半径大、电能质量高等优点,得到国内外学者越来越广泛的关注。由于低压直流微网的安全稳定运行,直接关系到对用户供电的可靠性,因此,本文围绕低压直流配用电系统,基于失效物理理论,从元件级、设备级和系统级逐级递进,开展相应可
结晶是精制各种固体化合物产品的重要方法之一。膜结晶因多孔膜材料对结晶过程存在明显的诱导作用而能较好地调控溶质分子在膜面的非均相结晶成核与晶体生长。然而在持续化膜结晶的过程中,发现晶体在膜面沉积时易发生膜孔阻塞,使得膜性能下降甚至失效。因此在膜结晶过程中有效分离膜面晶粒,维持系统可持续操作是膜结晶过程的发展方向。针对膜面晶体产品堵塞膜孔的问题,本文提出采用膜面旋转的膜结晶分离新方法,通过膜面旋转使附
人防工程关系到国家的安危,涉及到人民的生命财产安全,是国防建设的重要组成部分。随着城市化的不断发展,人防工程的规模越来越大,设备越来越复杂,对人防工程的设施管理也提出了更高的要求。有效的评价人防工程设施管理水平,能够明确各种因素对人防工程设施管理的重要性,同时可以为决策者提供依据。因此,对人防工程设施管理进行科学的综合评价,对于推动我国人防工程的健康发展具有重要意义。本文按照以下四个方面开展研究:
无监督异常检测旨在仅利用正常样本建立模型,而在推理时识别出不符合正常模式的样本。无监督异常检测在工业质检、视频监控等领域有广泛的应用。近年来深度学习和卷积神经网络在许多计算机视觉任务上取得了巨大的进步,但无监督异常检测方法在处理复杂的视觉数据时难以利用数据内部的语义上下文信息的问题依然存在。针对这一问题,本文在图像和视频两种类型的视觉数据上分别提出了相应的结合语义上下文的无监督异常检测方法。在图像
深度学习与人类智能存在一个显著的差异,即人类可以通过极少量的样本分辨新类别物体,而深度学习则需要大量训练样本才能实现良好的分类结果。为降低这一差异,研究人员开始探索小样本学习工作。小样本学习不仅能够减轻为模型收集大量全监督信息的负担,还能减少处理图像数据所需的人力物力。小样本学习分为三种学习方式:全监督学习、半监督学习和无监督学习。随着小样本学习的发展,一些研究人员从全监督小样本学习转向挑战性更高
序批式活性污泥法(Sequencing Batch Reactor Activated Sludge Process,SBR)处理工艺作为污水处理最广泛采用的技术,在污水净化方案中占据十分重要的地位。建立SBR过程故障诊断系统,能够及时检测故障的发生时刻和位置,提高SBR过程的稳定性和连续性。故障诊断系统对于提高生产效率、降低设备维护成本具有重要意义。本文以广州某造纸厂的SBR工艺过程为研究对象,
大功率光纤激光器因其高转换效率、高可靠性、高光束质量、结构紧凑、胜任恶劣环境等特点而广泛应用于工业制造和国防军事等领域。近年来,大功率光纤激光器的输出功率已达万瓦甚至数十万瓦量级。然而,在长时间高功率运行过程中光纤激光器可能会发生输出功率下降、泵浦阈值增加以及性能不稳定的现象,即光暗化效应,导致器件的稳定性和使用寿命等服役性能大幅降低,成为其进一步发展和应用的瓶颈。从材料的角度来看,在高功率运转下
PPP模式作为近年来广受关注的一种投融资模式,不仅可以有效缓解政府投资公共基础设施资金不足的问题,还成为了各大建筑企业承揽合同额的主要增长点。建筑国企以较大的规模、较高的资质信誉以及较强的施工能力更容易获得地方政府的认可,在PPP市场中占据相当比重的份额,建筑国企也将PPP模式视为市场开拓的大红利,今后承揽PPP项目的数量和规模也必将持续增大。但是建筑国企接触PPP项目的时间不是很长,对于影响PP