论文部分内容阅读
图像在获取和传输的过程中常常会受到很多因素的影响,造成图像质量的下降。图像中的噪声会影响人们的视觉效果,掩盖图像中很多重要的信息,使得图像的应用价值降低,因此图像去噪具有重要的研究意义。图像去噪的目的就是根据观察到的降质图像恢复原始真实图像。在实际去噪的过程中,一般图像中的噪声是不能够完全去除的,因此图像去噪过程中最后获得的图像是原始不含噪图像的估计图像,也即原始图像某种意义下的最优逼近。 本文针对经典的全变分(TV)正则化模型在图像去噪过程中容易导致阶梯效应的缺陷,提出利用二阶总广义变分(TGV)正则项代替 TV正则项的图像去噪模型,并根据小波变换模极大值在检测图像边缘应用中的优点,提出在TGV正则化模型中引入以小波变换模极大值为参数值的边缘检测函数的新模型。新模型有效缓解了阶梯效应的产生,并在去噪的同时对图像的边缘与细节进行了很好的保护。本文着力于探讨以下内容: 1.简单的分析了图像去噪的研究背景、研究目的及其意义,并简要描述了图像去噪的国内外研究现状。此外,介绍了图像去噪的一些理论基础,包括图像的表示、噪声的基本分类与相应的图像退化模型,以及图像去噪的质量评价方法。 2.介绍了偏微分方程的图像去噪的原理及其发展过程,概述了几种典型的偏微分方程去噪模型,分析了各种模型的优缺点。针对全变分正则化去噪模型容易造成阶梯效应的缺点,提出用总广义变分正则化代替全变分正则化的思想。介绍了总广义变分的一些理论基础,建立了二阶总广义变分的图像去噪模型,并利用一阶原-对偶算法对模型进行了求解。 3.介绍了小波变换的基础知识,基于小波变换模极大值在边缘检测的优点,以此为参数,提出了相应的边缘指示函数。通过边缘指示函数的相关信息去引导扩散,从而在去噪的同时很好地保持图像的纹理和细节信息。本文通过数值实验得到新模型的去噪结果,表明了模型的有效性和可行性。