【摘 要】
:
太赫兹波由于其独特的电磁频谱特性,在生物医学诊断、通信及雷达探测等领域具有重要的研究价值和应用前景。高性能太赫兹波辐射源是太赫兹波应用的关键技术基础,而太赫兹波参量辐射源由于兼具宽频率调谐范围和高功率单色太赫兹波输出,且拥有体积小、结构紧凑和室温工作等优点,是目前太赫兹波辐射源的重要研究方向之一。本文围绕太赫兹波参量辐射源的频率连续可调谐和输出能量特性等关键问题,对非线性晶体中基于受激电磁耦子散射
论文部分内容阅读
太赫兹波由于其独特的电磁频谱特性,在生物医学诊断、通信及雷达探测等领域具有重要的研究价值和应用前景。高性能太赫兹波辐射源是太赫兹波应用的关键技术基础,而太赫兹波参量辐射源由于兼具宽频率调谐范围和高功率单色太赫兹波输出,且拥有体积小、结构紧凑和室温工作等优点,是目前太赫兹波辐射源的重要研究方向之一。本文围绕太赫兹波参量辐射源的频率连续可调谐和输出能量特性等关键问题,对非线性晶体中基于受激电磁耦子散射(SPS)的宽带相位匹配及高增益泵浦技术进行了理论和实验研究,实现了宽调谐范围、高能量的高性能太赫兹辐射源,并应用于雷达散射特性表征。主要工作内容和创新点如下:1、研究了基于铌酸锂晶体的宽带高能量太赫兹参量产生技术。理论分析不同化学计量比铌酸锂晶体的介电、拉曼特性对基于SPS的太赫兹波频率调谐范围和转换效率的影响,实验设计循环泵浦技术,提高太赫兹波转换效率;与传统同成分铌酸锂(CLN)晶体相比,近化学计量比铌酸锂(SLN)晶体将太赫兹频率调谐上限从3THz扩展至4.64THz,并在1.6THz处提高太赫兹波能量2.75倍。2、研究了基于多模SPS的可调谐双色太赫兹波参量产生技术。理论分析了多模SPS中泵浦波长对双色太赫兹波相位匹配调谐及增益特性的影响,实验上利用双波长激光泵浦磷酸钛氧钾(KTP)晶体,通过同时激发不同A1振动模的SPS实现双色太赫兹波输出,其频率调谐范围为3.15-11.63THz和1.47-6.03THz,且双色太赫兹波之间输出能量比例任意可调。3、研究了基于相干SPS的太赫兹波参量产生技术。理论分析了非线性极化率共振增强效应对太赫兹波产生过程中参量效应和级联SPS效应的影响;实验上利用脉冲种子光注入技术,基于SLN晶体实现类光子区相干SPS,在1.04-5.15THz范围内获得3d B带宽提升2.6倍的高增益太赫兹波辐射;并基于KTP晶体实现类声子区增益补偿,获得2.96-6.48THz范围内的太赫兹波连续调谐输出,在3.3THz处输出能量提高6.84倍。4、实验研究了典型目标体在太赫兹频段的雷达散射截面特性。利用自行研发的脉冲种子注入式太赫兹波参量辐射源搭建了信噪比为17d B的近场太赫兹雷达散射截面测量系统,获得典型目标体在3.3THz和5.0THz处的雷达散射截面,结果表明相较于3.3THz处,5.0THz处的RCS值提高了3-7d Bsm。
其他文献
太赫兹(THz)波是电磁波谱中尚未完全认知和开发的最后一个频段,具有重要学术意义和应用价值。太赫兹时域光谱(THz-TDS)技术已被证明在研究生物物理特性及结构功能等方面具有突出优势,在获取物质特征集体振动模式信息和分子间相互作用信息的同时,不断向生物传感领域延伸。但是生物体系的高复杂性和水对THz波的强吸收,成为THz技术应用于生物研究中的重要瓶颈问题。本文以THz光子与分子间相互作用的能量匹配
飞秒激光脉冲具有脉冲宽度窄、峰值功率高、相干光谱宽的特点,在高端工业制造、微纳加工和科学研究中扮演着重要的角色。新技术层出不穷促进了飞秒激光技术的不断发展。目前基于单路飞秒激光放大或非线性压缩技术所获得的超短脉冲指标已经接近极限,为了获得更高的单脉冲能量或更窄的脉冲宽度,相干合成技术成为了一个新的发展方向。同时,高端加工等应用对飞秒激光的柔性传输需求也日渐凸显,近些年来出现的新型空芯光纤为高能量脉
基于传统半导体材料(诸如:硅、锗、铟镓砷等)的光电探测器制作成本昂贵,且仅仅可以用于制作小面积的平面芯片。基于液相合成等成本低廉的非传统方法进行制备的胶体量子点半导体材料的出现为制作高性能及柔性电子器件提供了可能。通过构建异质结,可以实现将两种或两种以上具有不同能级的材料整合在一个复合材料系统中。为研发基于红外胶体量子点的宽光谱探测、超快响应以及高探测灵敏度的光电场效应晶体管,本论文采用红外胶体量
近十几年来,阿秒激光在实验室的成功产生标志着阿秒科学的诞生。最近,研究人员发现反向圆偏振延迟阿秒脉冲与原子作用的电离过程可以生成涡旋状的电子动量谱。其复杂但规则的干涉结构,可以有效的表征原子或分子的动力学特性。本文通过数值模拟和理论计算对偏振阿秒脉冲诱导的涡旋电子动量谱进行了多方面的研究。研究工作可总结如下:首先,提出基于强场近似(Strong field approximation,SFA)理论
高功率窄线宽线偏振光纤激光器具有线宽窄、光束质量高、偏振度高等优势,被广泛应用于相干合成、光谱合成、非线性频率变换等领域,本文重点研究了高功率短波长(≤1030 nm)窄线宽线偏振掺镱光纤激光器。此外将短波长(1018 nm)掺镱光纤激光器作为泵浦源应用在单频系统当中,研究了同带泵浦技术对单频光纤激光系统的影响。具体研究工作如下:1.从理论和实验两方面研究了高功率1018 nm窄线宽线偏振光纤激光
中远红外波段在军事国防、生物医学、物质鉴定等领域具有重要应用价值与潜力。高性能可调谐中远红外辐射源是以上应用的重要保证。非线性光学频率变换技术是产生可调谐中远红外激光的有效方法之一。当前中红外及THz波段非线性光学晶体种类相对较少,限制了中远红外辐射源的调谐范围与转换效率。本文针对新型BaGa4Se7晶体以及DAST等有机晶体,研究了其在中远红外波段非线性光学特性,理论分析了其在可调谐中红外及TH
双波长激光在精密测量、差分光谱、生物医学以及频率变换等领域中发挥着重要的作用。除了将两台独立的激光器进行合束外,双波长激光的产生主要利用激光增益介质的不同增益谱线或光学参量振荡器来实现,但普遍存在结构复杂、功率不稳定、两个波长的功率比例及脉冲间隔不可调等缺点。为解决上述问题,本文提出了一种新型的基于端面共轴泵浦两个激光增益介质的双波长固体激光器方案,并开展相关的理论和实验研究,在1.06μm附近双
社会环境的急剧变迁导致发展的不确定性和复杂性日益严峻。这一情形使得“转型”成为各类组织解决危机、谋求生存的不二法则。高等职业院校组织亦是如此。但转型不是对未来的空想式建构,须是站在已有积淀上的优化与完善。因此,亟待从组织的视角和历史的眼光来审视改革开放40年来高职院校转型的过程、要素及逻辑。本研究综合运用文献考察法、历史研究法以及延伸个案法等质性研究方法和基于新制度主义学派的“组织场域”、“制度逻
有机半导体单晶具有长程有序、无晶界、缺陷态密度低的特点,是研究有机半导体结构-性能关系的理想工具,也是制备高性能光电器件的重要材料。与三维块体有机单晶相比,低维有机单晶(包括一维有机单晶及二维有机单晶)还具有大的比表面积以及分子级厚度等独特的结构优点,这些结构优点赋予了他们对外界刺激响应敏感、接触电阻小等性能优势,有望在未来柔性电子电路中扮演不可替代的角色。然而,低维有机半导体单晶的制备需要严格控