不同饱和水汽压亏缺和土壤干旱环境对作物水分利用效率的影响机理及模拟研究

来源 :西北农林科技大学 | 被引量 : 0次 | 上传用户:anglersss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
干旱胁迫是影响作物生长和发育的主要因素之一。随着全球气候变暖,降水减少,由气温升高或相对湿度降低引起的饱和水汽压亏缺(Vapour Pressure Deficit,VPD)增加和土壤干旱已经成为限制作物生长和产量的主要逆境胁迫。考虑到单子叶作物和双子叶作物对气孔调控过程和外界环境响应过程的差异,本论文分别以大麦(单子叶作物)和马铃薯(双子叶作物)为试验材料,通过人工气候室盆栽试验和田间遮雨棚盆栽试验相结合的方法,探讨了不同饱和水汽压亏缺和土壤干旱环境对大麦和马铃薯叶片气体交换参数、作物水分状况和水分利用效率的影响机理。定量表征了作物生命需水规律,探讨了不同环境情景下作物耗水量的变化过程,并采用Daisy模型(土壤-植物-大气系统模型)模拟了马铃薯对不同饱和水汽压亏缺和土壤干旱胁迫的主要响应过程,以期为未来农业水资源匮乏及气温升高导致的大气干旱环境下,优化生物节水技术和作物水分高效利用提供理论支撑。取得的主要结果如下:(1)VPD增加与土壤干旱显著抑制了大麦和马铃薯的叶片气体交换参数,但二者影响机制不同。土壤水分亏缺显著抑制了两种作物的气孔导度,同时伴随着叶片脱落酸(ABA)含量的升高,表明ABA参与了作物对气孔导度的调控过程。但对于马铃薯植株而言,叶片和木质部汁液ABA含量在高温环境下并未发现增加的趋势。另一方面,在高VPD(高温导致)环境下,温度升高增加了作物的蒸散需求,两种作物的蒸腾速率显著增加,同时诱导气孔关闭。此外,生长在高温高湿环境下的植株,叶片ABA含量较低,所以当遭受干旱胁迫时,无法及时有效的关闭气孔,气孔导度仍处在一个较高的水平,导致植株体内水分过度散失。总之,VPD增加和土壤干旱的双重胁迫对作物造成的损害远大于单一胁迫所造成的损害。(2)利用Linear-plateau模型量化了大麦单位叶面积日蒸腾量和马铃薯叶片气体交换参数对土壤有效水分动态变化的响应过程。发现大麦植株单位叶面积日蒸腾量和马铃薯叶片蒸腾速率受干旱胁迫开始下降的土壤有效水分(FTSW)阈值随VPD的增加呈增加趋势。对大麦植株而言,单位叶面积日蒸腾量受干旱胁迫开始下降的土壤有效水分阈值在高VPD(高温低湿,2.12 k Pa)环境下比低VPD(常温高湿,0.40 k Pa)环境下增加了130%;而马铃薯叶片蒸腾速率受干旱胁迫开始下降的土壤有效水分阈值在高VPD(高温低湿,1.70 k Pa)环境下比低VPD(常温高湿,0.41 k Pa)环境下增加了90%。同时,低VPD环境下马铃薯叶片气孔导度开始下降的土壤有效水分阈值(FTSW=0.43)显著低于高VPD环境下马铃薯叶片气孔导度对土壤有效水分动态变化的响应阈值(FTSW=0.80),且该阈值的变化与高温导致的ABA含量下降有关。结果表明,高VPD环境下作物对土壤水分亏缺的响应更为敏感。(3)VPD增加和土壤干旱的双重胁迫显著抑制了大麦和马铃薯植株叶面积的增加,生长在高VPD环境下充分灌溉和干旱胁迫的大麦植株比低VPD环境下植株的叶面积分别减少了48和58%,马铃薯植株叶面积的变化与大麦植株趋势一致。另外,高VPD与土壤干旱双重胁迫显著降低了大麦植株的叶片相对含水量和马铃薯植株的叶水势,同时引起两种作物气孔关闭,抑制光合速率,从而降低植株干物质积累。作物比叶面积是水分利用效率的指示剂,生长在土壤干旱环境下的大麦和马铃薯植株比叶面积和马铃薯植株叶片?13C值较低,但水分利用效率均比较高。(4)VPD增加和土壤干旱的交互作用显著抑制作物地上部分干物质的积累量和水分利用效率。与生长在低VPD环境下的植株相比,高VPD环境下两种作物地上部分干物质积累量降低均超过了50%,尤其是在土壤水分亏缺环境下,大麦和马铃薯植株的干物质积累量分别降低了63.2和53.4%。如果不考虑VPD的影响,土壤水分亏缺提高了大麦和马铃薯植株水分利用效率。但是在两种灌水处理下,大麦和马铃薯植株的水分利用效率均随着VPD的增加而降低,与生长在低VPD环境下的充分灌溉和干旱胁迫植株相比,高VPD环境下大麦植株的水分利用效率分别下降了64和18%,马铃薯植株的水分利用效率分别下降了59和48%。另外,高温高湿环境下生长的作物叶片ABA含量较低,蒸腾速率过大,导致作物体内水分消耗快,水分利用效率较低。高VPD与土壤干旱的交互作用导致作物叶片净光合速率、气孔导度、植株水分关系、干物质和水分利用效率进一步降低,说明高VPD与土壤干旱的双重胁迫加剧了对作物生长的抑制。(5)基于Daisy模型模拟了田间VPD亏缺动态变化环境下马铃薯净光合速率、气孔导度、叶片ABA含量、产量以及水分利用效率对土壤水分亏缺的响应过程。结果表明Daisy模型能够准确的模拟田间马铃薯植株充分灌溉和干旱胁迫环境中土壤水分含量的动态变化过程(充分灌溉环境模拟结果:决定系数(R2)=0.52,平均绝对误差(MAE)=0.005,均方根误差(RMSE)=0.007;干旱胁迫环境模拟结果:R2=0.88,MAE=0.013,RMSE=0.016),同时能分别解释不同灌溉处理下70和85%以上的叶片气孔导度和ABA含量的动态变化。此外,可以较为准确的模拟出不同灌水处理下马铃薯植株的水分利用效率,尽管在干旱胁迫环境下MAE(2.6)和RMSE(2.4)较大。这一研究有助于在未来温度不断升高,降水减少的环境下科学准确的评价和预测作物水分利用效率,为实现多种环境因素共同调控作物需水过程,进行作物-农田-高效灌溉全程水分利用效率协同研究以及作物定量精准高效灌溉提供理论支撑。
其他文献
苹果(Malus domestica Borkh.)是世界四大水果之一,也是我国最重要的果树种类。黄土高原地区不利的环境因素和苹果花芽形成难等问题制约着该地区苹果产业的发展。性状优良的砧木能够改善品种的生长和抗逆性能。植物激素在调控苹果成花等生长发育过程,以及应对不利环境的响应中具有重要作用。据报道,KNOX(Knotted1-like homebox)转录因子涉及多种激素的调控,从而调节植物生长
低温贮藏是园艺产品最重要的贮藏方式之一,它能抑制果蔬呼吸代谢、阻止衰败、延长果蔬贮藏期。然而低温引起的园艺产品冷害,是限制采后保鲜产业健康发展的重要因素。‘红阳’(Actinidia chinensis cv.Hongyang)是典型的冷敏感型猕猴桃品种,冷害问题严峻。本研究旨在探索能有效增强‘红阳’果实抗冷性,减轻冷害的处理方式,并探究其作用机制。以‘红阳’猕猴桃为材料,经不同浓度外源脱落酸(A
我国苹果种植面积居世界首位,黄土高原是世界公认的苹果优势产区之一。目前该区域苹果种植过程中化肥过量使用、养分投入时间与树体需求不匹配,提高水氮资源的利用效率对于提高苹果品质和优果率、降低环境污染风险等有重要意义。本研究以矮砧密植(株行距2 m×4 m)苹果树为研究对象,采用具有显著节水、节肥、增效特征的水肥一体化方式供应水氮,于2017年10月至2020年10月在陕西洛川开展了苹果树水氮用量的田间
淡水资源短缺是维持农业生产可持续发展与确保粮食安全的主要限制因素。近几十年来,大气CO2浓度不断上升,不仅影响了作物的生长环境,同时还加剧了全球的温室效应,进一步加重了水资源短缺问题。因此,了解在未来CO2浓度倍增条件下有限水资源供应对作物生长的影响,对更好地应对未来气候变化,确保高效用水并最大限度地提高作物产量和品质至关重要。番茄作为一种水分敏感型作物,已成为植物生理生化试验研究的模式作物。本文
茉莉酸(Jasmonic acid,JA)作为一种重要的植物激素,在植物生长、病害防御和机械损伤过程中起到了重要的调控作用。酰胺合成酶(Gretchen Hagen 3,GH3)家族作为参与茉莉酸信号调控的重要基因,主要将茉莉酸转化为具有生物活性的化合物(茉莉酸异亮氨酸耦合物,JA-Ile)从而诱导应答基因表达发生变化。由于马铃薯中茉莉酸信号通路基因的研究较少,相关GH3蛋白功能分析的研究未见报道
长柄扁桃是榆林地区重要的生态经济型灌木树种,在当地煤矿塌陷区的生态修复过程中发挥重要作用。然而,长柄扁桃纯林存在生长缓慢、易受沙埋、自然更新困难和单位面积生产力低等问题。与纯林相比,种间合理搭配的混交林具有维护林分稳定性、增加土壤微生物群落多样性、促进林分生长和提高单位面积生产力等方面的功能。化感作用对种间配置至关重要,植物的种子萌发和幼苗生长与化感作用密切相关。因此,本文以长柄扁桃为研究对象,从
小麦(Triticum aestivum L.)是中国重要粮食作物之一。小麦条锈病(Puccinia striiformis f.sp tritici Erikss)在世界各地的小麦种植区均有发生。由条锈病导致的病害管理负担加大和小麦减产对经济发展造成了巨大的损失。小麦条锈病作为破环性极大的病害之一,几乎在所有中国冬小麦产区都有周期性发生。化学药品虽可用于防治条锈病,但化学药品的使用会大幅增加小麦
昆虫表皮碳氢化合物(Cuticular hydrocarbon,CHC)作为与外界环境直接接触的第一道屏障,在诸多方面对昆虫起到保护作用,比如:在干旱环境下防止陆生昆虫体内水分通过表皮蒸发流失和阻挡外源微生物细菌、真菌和病毒对昆虫的侵入。另外,昆虫CHC作为昆虫性信息素的物质基础,在昆虫进行物种和性别识别以及雌雄交配等社会行为方面至关重要。因此,本论文主要聚焦于影响CHC合成、转运和接收三方面,通
小麦是人类最重要的粮食作物之一。然而,小麦的安全生产受到病虫害和逆境胁迫的严重威胁。在病虫害中,病害是影响产量最重要的因素。三种小麦锈病对小麦生产造成严重威胁,其中条锈病是全球许多小麦产区最重要的病害。植物通过自己防御机制来抵御入侵的病原菌。转录因子(TFs)在植物防御入侵的病原菌的反应中发挥至关重要的作用。本研究,从MYB和APTALA2/AP2两个TF家族中选择了两个基因TaMYB77和TaA
小菜蛾属鳞翅目菜蛾科,分布于世界84个国家和地区,是一种世界性害虫。我国各地均有分布,但以长江中下游地区发生为害最重。小菜蛾主要为害十字花科植物,每年都会对世界各地的蔬菜生产造成巨大的经济损失。小菜蛾主要依靠成虫进行扩散,成虫产卵位置的选择对其后代的生长发育和种群繁衍具有重要作用。但是,小菜蛾在不同寄主植物上的产卵行为及产卵的因素尚不完全清楚。因此,本文对小菜蛾成虫在8种十字花科植物甘蓝、芥蓝、白