论文部分内容阅读
二元码的检错性能在编码理论中占有重要的地位,码的不可检错误概率是反映数字通信系统性能的一个重要参数.二元等重码作为检错码得到了广泛的应用.二元2-重量码作为等重码的推广也有重要的应用.关于编码理论和检错码的一般知识请参阅[5][2][7],等重码和2-重量码方面的文章请参阅[8]-[15].为了徇检错码的好坏,引进了检荀好码和最优检错码的概念(定义1和2),但检错好码和最优检荀码很少.在实际应用中,信道荀误概率p很小,为此,文[6]引进了阈值的概念(见定义3).只要p<θ(C),那么该码仍然有较好的特性,适合用于实际信道.该文首先讨论了二元互补2-重量码(n,2,w,n-w)的阈值的极限行为,然后给出了一般二元等重码(n,2δ,w)的阈值的下界,最后讨论了最优二元等码(n2,n/2)在区间[0,θ(C)]中的单调特性.