论文部分内容阅读
胰腺是脊椎动物中参与营养代谢和血糖平衡的重要器官。心血管系统负责氧气、二氧化碳、营养物质和代谢废物的运输及调节内稳态。斑马鱼为小型亚热带淡水鱼,胚胎体外发育,胚胎透明易观察,单次产量高,成熟周期短,易于饲养等优势使其成为理想的脊椎动物模型,可用于消化器官和心血管系统发育。在斑马鱼中胰腺由背侧胰芽(dorsal bud)和腹侧胰芽(ventral bud)融合发育而来,背侧胰芽在24hpf出现,主要发育成内分泌细胞(endocrine),腹侧胰芽在34hpf开始出现,主要发育成外分泌细胞(exocrine)及少部分内分泌细胞。心脏则是由两侧的心肌祖细胞向背侧中线迁移并融合形成圆锥状,心内膜祖细胞在圆锥体中间,当圆锥转变成心脏管后心内膜祖细胞将形成心内膜细胞并形成空腔。这两个器官形成受一系列动态变化的信号和转录因子精确调控,gata6在这两个器官中均有表达,这暗示着gata6可能参与调控胰腺和心脏的发育,但是到目前为止gata6参与调控胰腺和心脏发育的具体分子机制尚未完全阐释。gata6是GATA锌指结构转录因子家族一员,主要负责中胚层和内胚层的特化与分化。为了研究gata6在胰腺和心脏发育中的功能,我们利用CRISPR/Cas9基因编辑技术敲除了gata6,并获得了两个在外显子2上分别删除5个和20个碱基的突变体,其突变型mRNA含有早熟终止密码子,编码蛋白都为截短蛋白,缺失结合DNA的锌指结构域。在gata6△20/△20中前肠发育缺陷、肝脏偏小及外分泌胰腺严重缺失,在3dpf的突变体中trypsin标记的分化的外胰为两小团分散的组织。为研究外分泌胰腺祖细胞的发育状况,我们将gata6△20/+杂交至Tg(ptf1a:GFP)背景上,连续观察发现野生型腹侧胰腺祖细胞只形成一个腹侧胰芽并且长大,然而在突变体中形成两个分离的腹侧胰芽,其正常生长也受到抑制。上述结果表明在在gata6突变体中腹侧胰芽异位生长且生长受到抑制。前期研究结果表明LPM迁移缺陷可能会导致外分泌胰腺发育缺陷,为了探究腹侧胰芽不能融合的原因,我们检测了LPM的迁移情况,突变体中LPM迁移正常。文献表明在小鼠中shh异位表达会导致外分泌胰腺发育缺陷,我们检测了shha的表达水平,shha在突变体中的内胚层异位过表达,为研究此异位表达是否为导致胰腺发育缺陷的原因,我们用cyclopamine抑制Hedgehog信号通路,但是不能挽救突变体的外胰腺缺陷。gata6影响外分泌胰腺发育的机制需要进一步探索研究。我们还研究了gata6在心脏发育过程中的功能,观察发现在野生型中24hpf开始出现血液循环,然而在突变体此时没有血液循环,但是心跳正常,为了进一步研究心脏发育状况,我们借助转基因鱼Tg(flk1:GFP)发现突变体的心脏流出道(outflow tract)的内皮细胞相互紧靠,没有形成能够通过血液细胞的空腔。在随后的观察中发现大约70%的突变体会在26hpf到48hpf之间恢复血液循环。前期研究表明基因突变体中可能存在遗传补偿效应,我们检测发现gata5在突变体的心脏中表达水平明显上升。在突变体中适量敲降gata5可以显著降低突变体恢复血流的比例,并且适量注射gata5 mRNA可以逆转此结果。文献报道血管形成空腔的机制存在一种内皮细胞聚集成棒状结构后内皮细胞极化分开再形成空腔的模式,这种血管形成主要是通过VE-cadherin—PKC—Factin—myosin II途径。为验证斑马鱼中心脏流出道中空腔形成分子机制是否符合这种模式,我们用Blebbistatin、Latrunculin B和Nocodazole分别处理22hpf的野生型胚胎,分别抑制myosinII、F-actin和microtubule,发现用这三种药都能使心脏流出道不能形成空腔,我们检测了36hpf时心脏流出道中PKC表达量,我们发现sibling中PKC表达量更高,恢复血液循环的突变体比没有恢复的突变体有更高的PKC表达量,gata6/gata5可能是通过直接调控PKC的表达量来控制心脏流出道中的空腔的形成。综上所述,我们的研究为探索gata6在胰腺和心血脏发育提供了新的信息。