新型半月板组织工程支架的制备及细胞评价

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zebra4th
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半月板结构总体积的3%-5%被损坏,其所承受力将提高至原来的3-5倍。而伴随着半月板损伤导致的关节软骨退化症、膝关节积液等问题会逐步加剧。其中,半月板内侧三分之一的“白-白”区由半月板细胞及其细胞外基质构成,再生能力极其有限。该区域损伤尚无较好的治愈方法。本文的研究目的是构建一种新型半月板组织工程支架。具体的方法是通过猪源半月板组织脱细胞处理,获得猪源半月板组织细胞外基质(Decellularized meniscus extracellular matrix,DMECM),并将DMECM作为添加材料与明胶/壳聚糖(Gelatin/Chitosan,G/C)按照不同比例进行混合,然后对优选出的DMECM-G/C支架进行表征。以该新型支架的SEM图像为微观结构基础,通过实验获得整体支架的应力-应变曲线为力学参考数据,建立支架单孔即单胞有限元模型。应用该有限元模型计算出所构建的新型支架材料DMECM-G/C单孔的受力情况。结果表明,在压溃实验中,支架底部先受到较大的力而呈压溃状态,上部所受力相对较小。受力压强在0-0.25 MPa时,单孔在线弹性范围内,压强在0.25 MPa时,单胞持续受力变形,随后单孔进入压溃变形阶段和单孔压溃后的紧实阶段。得到结构等效弹性模量为0.1288 MPa。新型支架的基本物理性质、弹性模量、红外光谱、电镜以及压缩实验测试及计算结果表明,本文所获得的新型复合半月板支架材料1%DMECM-G/C复合支架展示出优良的力学性质,有望成为理想的半月板组织工程支架材料。本文完成了 SD大鼠骨髓间充质干细胞(Bone mesenchymal stem cells,BMSCs)的分离、培养、鉴定、增殖等项实验,并用BMSCs对DMECM-G/C的生物相容性进行评价。结果表明,最理想支架的配比为1%DMECM-G/C,适于BMSCs生长,能够作为半月板组织工程支架用于今后的研究。本文尝试探讨压力胁迫对DMECM-G/C培养BMSCs的影响。本文设计并制作完成了间歇式可控高压生物反应器。在该反应器中进行了细胞支架复合物压力胁迫下培养。采用Western blot实验方法检测三维支架培养(3D)、静态液压对BMSCs凋亡的影响。实验结果表明,与2D培养相比,1%DMECM-G/C复合支架3D培养的Caspase9、Bad的表达显著降低。与上述两组相比,1%DMECM-G/C复合支架联合液体静压力干预,BMSCs的Caspase9、Bad表达最低。较长时间持续液态静压和1%DMECM-G/C支架通过激活Akt的磷酸化进而对BMSCs的凋亡有明显抑制作用。本研究结果提示1%DMECM-G/C支架可为体外BMSCs培养提供更加良好的环境。
其他文献
膜分离作为一种高效的水处理技术,被广泛用于饮用水净化和污水处理领域。传统膜分离技术存在膜污染严重、膜的渗透性与选择性互相制约等问题。碳纳米材料具有原子级光滑的表面和高比表面积,采用碳纳米材料构建的分离膜有望获得远高于传统分离膜的水传输特性和分离能力。而且碳纳米材料还具有优异的导电性,通过电辅助与膜分离技术的耦合能进一步增强膜性能,为解决膜分离技术的瓶颈问题开辟了新途径。目前碳纳米材料分离膜的制备过
以聚醚醚酮(Polyetheretherketone,PEEK)、聚酰胺(Polyamide,PA)为代表的高性能热塑性工程塑料及其碳纤维增强复合材料具有优异的力学性能、耐热性能和耐腐蚀性能等,近年来在汽车工业、机械装备、电子电器和航空航天等领域得到广泛应用。短纤维增强和连续纤维增强是碳纤维增强复合材料的两种主要形式。短碳纤维(Shortcarbonfiber,SCF)增强复合材料易于成型加工复杂
风力发电机叶片和飞机机翼覆冰对其正常工作带来严重的干扰问题。沿面介质阻挡放电(Surface Dielectric Barrier Discharge,SDBD)作为一种新型的除冰技术,由于能耗低、响应快和良好的除冰性能近年来受到学者们的青睐。但SDBD及其除冰的等离子体过程、放电模式转变和物理效应等问题有待进一步探究。基于此,本文采用实验与模拟相结合的方式研究了脉冲SDBD及其除冰过程的等离子体
“三公”调度一直是我国主要的调度原则,其要求电量计划的制定和各发电厂商的电量执行进度均满足“三公”要求。近年来,随着新能源装机规模的不断增大、以大用户直接交易为主的“市场电”比例的逐年增加,电力系统的优化运行愈加复杂,电能交易计划作为其基础和最为重要的环节之一,亟需开展新形势下理论方法研究。然而,目前“三公”调度始终缺乏具有理论基础且被公认的公平性指标作为支撑,且已有的年度电能交易计划制定方法也较
为了实现控制本世纪末全球平均气温升高小于2℃的目标,“巴黎协定”提出了通过国家自主贡献(INDC)实现减排目标的国际框架,这需要各个国家和行业相互协同应对挑战。建筑能耗是世界第二大能源消费领域,其运行阶段所消耗的能源是影响温室气体排放、环境污染、资源消耗的重要原因,也是威胁世界可持续发展和气候变化目标的关键因素之一。住宅建筑能耗占中国建筑领域总能耗的62%,在中国城镇化快速发展趋势下,住宅建筑能耗
结构生色材料作为一种新型的显色材料,具有良好的光稳定性和亮丽的颜色,有望代替颜料和染料。胶体微球组成三维有序结构或短程有序、长程无序结构是常用的产生结构色的方法。三维有序结构具有亮丽的结构色,但存在角度依存性,严重的限制其在显示等领域的应用。短程有序、长程无序结构易于大面积制备且具有无角度依存性的结构色,但颜色暗淡、饱和度低。这主要是由于目前该结构通常是以低折射率聚合物微球或SiO2微球为结构单元
锂离子电池作为一种绿色环保的储能装置已经在便携式电子设备及电动汽车领域得到广泛应用,但是目前商业化的石墨负极理论比容量较低,限制了锂离子电池的能量密度和功率密度。金属硫化物和金属磷化物具有较高的理论比容量,并且储量丰富、价格低廉,有望代替目前的商用石墨材料成为下一代锂离子电池负极材料。金属硫化物的电子导电率较低,以及循环过程中的体积效应严重影响锂离子电池的电化学性能;金属磷化物则兼具嵌入反应和转化
由于ZrO2具有酸碱性兼备的表面、丰富的氧空位、弱亲水性等特点,可作为催化剂载体,在多相催化反应中应用广泛。通过调控ZrO2材料的结晶度、比表面积、化学组成、表面酸碱性、微纳米结构等性质,可以有效地提高材料表面活性位点数量、促进物质扩散、增强催化性能。基于这一目的,本论文综合利用多孔模板法以及微流控和静电纺丝等技术,合成了一系列ZrO2基无机复合材料,并以此为载体进一步制得性能优异的多孔复合催化剂
人体头部遭受过量外部载荷而导致的脑组织损伤被称为创伤性脑损伤(Traumatic brain injury,TBI)。TBI是一种严重危害人类健康的疾病,由于TBI的发病率日益增加,针对TBI的相关研究越来越受到人们的重视。对于TBI的深入研究不但可以探究TBI的发病机理、损伤区域等病因,还可以为TBI高发人群提供防护装备设计灵感和依据。目前的TBI研究已成为医学与力学研究的交叉领域,研究方法可分