论文部分内容阅读
图象分辨率是图象质量的重要指标之一。遥感图象是很重要的一类图象,其分辨率的高低对目标识别和精确判读有重要影响。图象超分辨重建是指利用同一场景的一帧或多帧低分辨率图象重建一帧或多帧高分辨率图象的技术。本文针对遥感图象特点及其超分辨需求,在不改变成像系统硬件条件的情况下,分别在频域和空域对图象超分辨重建技术进行创新性研究。在遥感图象频域超分辨重建技术方面,以两帧输入为重点,利用基于频谱扩展与补偿的单帧超分辨算法和再采样函数突破频域解混叠方法的两个限制条件:输入低分辨率帧数要求最少四帧和帧间亚像素位移满足一定的关系,建立改进的频域解混叠方法。首先对基于频谱扩展与补偿的单帧超分辨算法进行改进。提出频谱变换与增强滤波器,在振铃程度较小时执行该滤波器,使得在不降低超分辨效果的同时大大减少运算量;利用五次多项式拟合提出表示振铃程度的控制参数P值的自适应设置方法,使得对图象振铃程度的检测更为准确和方便,建立了改进的单帧超分辨算法。在改进的两帧输入频域解混叠方法中,首先利用建立的单帧超分辨算法对两帧输入低分辨率图象分别执行行和列各放大四倍模式的单帧超分辨,再利用高斯再采样函数对单帧超分辨结果分别进行行和列1/4模式的下采样,得到和原输入低分辨率图象具有同样分辨率等级的32帧图象,突破了频域解混叠算法对帧数的限制条件;研究了帧的挑选方法,从32帧中挑选满足位移限制条件的12帧图象执行频域解混叠算法,从而突破了算法对帧间位移的限制条件。一系列实验结果表明,模拟遥感的仿真实验可使图象的PSNR提高6~8dB;真实两帧输入的实验可使结果图象相对输入图象的对比度改善达到11~12dB;可以将2.0m和3.0m分辨率的遥感图象分辨率分别提高1.54倍和1.77倍以上。在遥感图象空域超分辨重建技术方面,依次对泊松最大后验概率(PMAP, Poisson Maximum A-posteriori Probability)估计技术、凸集投影(POCS, Projection Onto Convex Sets)估计技术以及PMAP/POCS融合优化超分辨重建技术进行创新性的研究,以求达到更好的超分辨效果。根据遥感图象概率分布满足泊松(Poisson)分布的特点,对PMAP估计技术进行改进研究。通过深入分析经典PMAP估计方法的特点和限制条件,进行了三方面的改进:加入下采样算子和位移算子使其适用于更一般的成像模型,同时也提高了超分辨效果;引入Tukey正则化项,使可能出现的“病态”问题转变为“良态”问题;在迭代运算过程中采用逐像素选择的方法,使不满足鲁棒性要求的像素点对像素更新不起作用,使其具有了更强的鲁棒性。进而,建立鲁棒性的RGPMAP(Robust Generalized PMAP)超分辨重建算法。实验结果表明,所建立的RGPMAP算法具有良好的超分辨效果和很强的鲁棒性,可使具有0.4像素配准误差或25dB噪声的2/4帧输入超分辨结果的PSNR值提高5~8dB和8~10dB以上;而该配准误差和噪声对RGPMAP算法结果影响很小,在0.7dB以内。同样,针对传统POCS估计技术鲁棒性差的缺点,增加一个高分辨率的退化图象与输入低分辨率图象对应像素之差的阈值,进行逐像素挑点操作,仅使满足条件的像素点执行POCS算法,从而建立鲁棒性的RPOCS(Robust POCS)超分辨重建算法。实验结果表明,所建立的RPOCS算法,不但具有较强的鲁棒性,而且具有更好的超分辨处理效果,可使具有0.4像素配准误差和25dB高斯噪声的2/4帧输入超分辨结果的PSNR值提高6~9dB和12dB以上,而对RPOCS算法结果影响在0.8dB以内。由于基于集合理论的POCS方法具有较强的吸收先验信息的能力,而基于概率统计理论的PMAP方法具有很强的恢复高频信息的能力,为充分利用PMAP和POCS两类方法的优点,进一步将所建立的RGPMAP超分辨重建方法和RPOCS超分辨重建方法融合起来。在融合方法中,对RGPMAP和RPOCS两种重建方法的迭代次序和迭代次数进行研究,建立RGPMAP-RPOCS融合优化超分辨重建算法。模拟遥感图象仿真实验表明,融合算法结果图象PSNR比RGPMAP算法和RPOCS算法提高2~3dB;利用两帧真实遥感图象的实验结果表明,结果图象相对输入图象的对比度改善达到13dB以上;可以将2.0m和3.0m分辨率的遥感图象分辨率分别提高约1.75倍和1.90倍。