论文部分内容阅读
论文主要针对南方集体林区的森林资源调查与监测的关键技术与方法问题开展研究,选取了试验区1(浙江省建德市)、试验区2(江西省吉水白沙林场)、试验区3(江苏省东台林场)作为试验区。这些区域都处于南方集体林区的亚热带常绿阔叶林和针阔混交林经营区,南方集体林区具有较好的森林生长自然条件,森林资源集约化监测与管理对提升森林质量具有重要的意义。森林资源二类调查成果是指导和规范科学经营森林的重要依据,是森林质量精准提升的基础。森林资源监测的高新技术不断涌现,无人机遥感技术、地基激光雷达、机载激光雷达技术开始在森林资源二类调查中应用。现代化森林调查监测技术广泛应用了航天遥感、航空遥感、全球定位系统、数据库技术及计算机网络技术等高新技术,由此引发新形势下对高时效、高精度、多层次的森林资源二类调查的新要求。论文主要研究内容如下:1、构建了一个提取有林地小班地类变化的综合相似度指数FSi计算公式综合相似度指数FSi描述发生变化小班与入样有林地小班对象因子特征值之间的相似程度,FSi值越大表示该小班地类有极大的可能性发生变化。综合相似度指数计算公式如下:FSi=(?),Fzi=bzi-m1/σi式中,bzi为特征波段i中第z个小班波段值,m1、δ i分别为特征波段i中入样有林地小班对象波段均值和标准差,N为特征波段个数,FZi为构建的相似度指数统计量,FSi为综合相似度指数。试验区(建德市)2013-2014年landsat8 OLI遥感影像分析结果表明:2014年的各入样有林地小班对象的Band2影像特征值、Band3影像特征值、2013-2014的NDVI差值和其主成分分析第一主成分PC1差值的FZi,其趋势均呈现近似正态分布规律。利用该特征构建综合相似度指数FSi,实现试验区2013-2014年变化小班的提取,在不区分小班类型时正确率、漏检率、错检率分别为86.79%、13.21%、84.91%,区分小班不同的坡度和坡向类型时,其正确率都达到90%以上。该方法应用于同一地区2014-2015年小班变化信息的提取得到较好的效果,其正确率都达到80%以上。该方法为小班地类变化信息提取提供了一种改进的方法,为森林资源年度变更调查、森林资源二类调查的复查、小班空间数据获取提供支撑,具有较好的应用价值。2、研究了基于无人机遥感数据的森林蓄积量双重回归估计方法采用基于无人机遥感样地的模型预估蓄积量值作为双重回归估计中辅助因子,地面实测样地的蓄积量值作为双重回归估计中主因子(目标变量),论文提出了双重回归估计中辅助因子的几种估测方案。结果表明:五种辅助因子获取方案其估计精度都在90%以上,方案一、方案三、方案五其R2都在0.68以上,有利于提高估计精度,5种方案其估计区间也较为一致,说明基于无人机遥感数据获取辅助因子并进行双重回归估计是可行的,方法的研究为无人机遥感技术在区域森林资源二类调查和监测开辟了新的途径。由方案一双重回归估计得到试验区(东台林场)杨树人工林公顷平均蓄积量为142.6m3,公顷平均蓄积量其估计区间为133.8~151.4m3,其蓄积量总量估计区间为94265.1m3~106628.1 m3。该方案的估计精度为93.85%。由方案五双重回归估计得到东台林场杨树人工林公顷平均蓄积量为143.0m3,该方案的估计精度为93.26%,试验区杨树人工林蓄积量总量估计区间为94031.8m3~107371.0 m3。3、探讨了基于无人机遥感数据的森林生物量双重回归估计方法根据论文研建的冠幅和树高模型W = 0.0039Cw1.1153h2.8713,对样地生物量进行测算,作为其辅助因子。该方案基于无人机遥感影像获取的样地平均冠幅和林分平均高,本次试验用模型预估值代替林分平均高。应用样地平均冠幅和林分平均高推算无人机遥感样地单株平均生物量,根据无人机遥感样地获取的株数乘以单株平均生物量,得到样地的生物量。根据双重回归估计得到试验区平均单位面积的公顷生物量为73098.5247 kg。试验区杨树人工林地上部分生物量其总量估计为5.1486×107kg,估计区间为(4.7985×107~5.4987×107kg),估计精度为93.2%。4、提出了小班ΠPS抽样和分层ΠPS抽样的估计方法本文提出了小班ΠPS抽样总体总量的估计,并给出了小班ΠPS抽样的近似方差的估计量计算公式,并对试验区杨树人工林的蓄积量进行估计。论文研究结果可知,小班ΠPS抽样不分层的情况下,试验区杨树人工林总体总量的估计为98114.40 m3,估计区间为86348.08 m3~109880.72 m3,精度达到88.00%。对小班组合类型的分层ΠPS抽样估计得到较好的效果。小班分层ΠPS抽样对杨树人工林总体蓄积量的估计为99327.15 m3,其估计精度达到92.24%。在相同样本量的情况下,小班分层ΠPS抽样比不分层的小班Π PS抽样的精度要高。5、研究了小班Π PS抽样的森林生物量抽样估计方法对于试验区杨树人工林总体而言,小班分层Π PS抽样估计森林生物量其总量的估计为 51945846.68 Kg,估计区间为 47916655.21~55975038.16Kg。精度达到 92.24%。在相同样本量的情况下,小班分层Π PS抽样比不分层小班Π PS抽样估计森林生物量的精度要高。森林资源二类调查中各小班单元大小不等,应用不等概抽样效率高的优点进行森林资源二类调查中小班不等概抽样达到对调查总体提供可靠的估计,使得森林资源二类调查自成体系并有一定精度保证,是森林资源调查小班抽样需要解决的技术难题之一。本文研究的无放回小班不等概抽样(小班ΠPS抽样)在试验区杨树人工林蓄积量、生物量、林木总株数的估计中都取得了较好的效果,能达到森林资源二类调查规程规定的精度。论文研究有利于补充和完善小班不等概抽样理论与方法,形成小班ΠPS抽样的森林资源监测体系。总之,深入研究森林资源二类调查的关键技术与方法,将有助于推动地方森林资源监测技术进展。无论从森林资源监测的实际需要和该理论方法的解决等方面,该项研究都是有积极意义的。