论文部分内容阅读
毫米波指的是波长介于1-10mm的电磁波。毫米波可以被广泛应用于雷达系统、射电天文学和太空以及短距离无线高速传输等领域。目前,采用GaAs、GaN和InP基的毫米波频段的MMIC已经应用于军事雷达和卫星通信中,但其成本较高。由于受到成本和产量的因素的限制,毫米波产品还没完全被实现商业化。随着毫米波雷达技术和反雷达技术的发展,毫米波收发组件、固态器件等毫米波系统必定将会朝着小型化、低成本、系统化、高集成度和稳定性好等方向发展。本文基于主要参数设计指标,设计了 Ka频段收发组件的系统方案,调研了国内外已有的半导体芯片厂商并选取了合适的微波单片集成电路芯片搭建整个收发组件,作者主要进行了以下的研究工作:(1)通过对微带线理论的分析,对微带线的阻抗、材料和尺寸之间的关系进行了分析优化;同时对键合过程中金丝金带数量、键合线材料和不同基板材料与其互联特性的影响进行了分析。因此,传输线互联结构能够在Ka频段具有好的传输系数和高的反射系数,为后续收发组件电路实现打下了基础。(2)通过对E-Y和E-T功分结构的原理进行分析,设计了基于E-Y结构的Ka频段三路功率分配/合成器和基于E-Y和E-T结构的Ku频段五路功率分配/合成器等奇数路功率分配/合成网络。通过对其进行分析和模拟仿真,同时对五路功率分配器进行了加工,并对其背靠背结构测试。测试结果表明,在12-18GHz的频段内,实测的回波损耗优于20dB,实测的插入损耗小于0.35dB,仿真和实测的曲线有一个较好的吻合。奇数路功分与传统二进制功分结合,能够实现任意路功率分配器,从而提高合成效率,为后续发射模块功率放大提供了基础。(3)通过对收发组件原理和具体实现形式进行调研和分析,结合收发组件的主要参数技术指标,提出了以两次变频的超外差结构来设计Ka频段固态收发组件的总体结构设计方案。同时根据给定的参数技术指标,从国内外半导体芯片厂商选取了合适的微波单片集成电路芯片,然后,根据总体结构方案设计在cascade软件中进行了收发组件系统模拟仿真。模拟仿真结果表明,该收发组件接收支路在射频27.5-31GHz的频段内,接收功率≤-15dBm,噪声系数为3.79dB,通道的小信号增益≥35dB;发射支路在射频27.5-31GHz的频段内,发射输出功率约为1OdBm,杂散抑制度大于35dBc。实验仿真结果满足预先目标,确认了本论文中收发组件设计方案的可行性。