论文部分内容阅读
无线通信系统中利用了许多统计学相关技术完成对一些具体问题的最优化求解,如信道估计,信号检测,调制识别,但是随着系统本身的日益复杂,人们逐步需要从繁琐的数据中寻求简便智能的方法给出对这些问题的解决方案。统计学习理论试图帮助人们从繁多的数据和现象中揭示事物规律本质。与传统统计学相比,统计学习理论(Statistical Learning Theory,SLT)是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的学习理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。论文主要围绕统计学习理论在通信系统中的一些应用问题进行了研究和探讨,其主要贡献在于:1、针对混沌时间序列的特性,根据混沌动力系统的相空间重构理论,利用SVM可以自动把输入向量映射到一个高维特征空间中实现数据的线性及非线性划分的功能,将具有统计学习功能的最小二乘支持向量机用于构建预测模型,并用该模型对混沌跳频序列进行预测,通过计算机仿真验证了该模型的正确。2、针对混沌时间序列的动态系统特性及普通神经网络在预测时存在的局限,论文提出一种将具有混沌动态特性的神经节用于构造混沌神经网络进行预测的方法,并以此对一般混沌动态系统建立预测模型,最后对Mackey-Glass混沌序列和Logistic-Kent映射的混沌跳频序列进行预测研究,并通过仿真验证了该模型的正确。3、不同于传统的经验风险最小化准则下的信道估计方法,论文研究了在结构风险最小化准则下,基于支持向量机的信道估计技术。由于MIMO及非线性通信信道的复杂性使得信道估计精度和速度相比SISO信道估计大大降低,在样本数量有限的情况下,这一问题就更加突出。现有信道估计方法往往局限于SISO信道的非线性估计,或者是非时变线性MIMO信道估计,而对于非线性时变信道估计则通常是将时变非平稳信道估计看作是在一段时间内的平稳信道估计进行处理,但在收敛精度和速度上不能达到满意的结果。针对以上不足,论文利用最小二乘支持向量技术将MIMO信道估计问题转变为求解多维信道函数的回归问题,利用支持向量技术的动态多维拟合方法对MIMO系统进行自适应非线性信道估计,显著提高了收敛精度和预测速度。4、在无先验样本可利用的情况下,仅依靠有限的信号先验统计特性,针对已有的盲信道估计和均衡算法在收敛速度上的不足,利用最小二乘支持向量技术改进传统的恒模盲均衡算法,并采用迭代权值方法进一步减小计算量,加快收敛速度,计算机仿真验证了该方法的高效性。5、根据跳频通信网中跳频序列族满足最大汉明相关距离最小化的正交特性,论文提出适用于非平稳条件下的多个子网混和跳频信号的盲分离模型,并将一种改进的短时相关算法和改进的最小互信息量算法应用于混和跳频信号的在线盲分离,验证了该算法的有效性。