【摘 要】
:
李Poisson代数是在李代数和Poisson代数的基础上发展起来的,具有双代数结构.本文对其分解和泛中心扩张问题进行了研究.第一章首先给出了李Poisson代数T的子代数,理想,同态等
论文部分内容阅读
李Poisson代数是在李代数和Poisson代数的基础上发展起来的,具有双代数结构.本文对其分解和泛中心扩张问题进行了研究.第一章首先给出了李Poisson代数T的子代数,理想,同态等基本定义.然后通过引入T的T-自同态,得到了具有平凡中心的李Poisson代数的分解在不计次序的条件下是唯一的.第二章研究了李Poisson代数的中心扩张和泛中心扩张相关性质,并通过构造其泛中心扩张,得到了其存在泛覆盖的充要条件是T为完全的.最后研究了李Poisson代数的自同构群和导子的提升.具体定理如下:
定理1:T是李Poisson代数,并且Cr=0,T有理想的直和分解,T=K1()K2…()Kr,T=L1()L2…()Ls.其中Ki(1≤i≤r),Lj(1≤j≤s)均是T的不可分解理想,则r=s,并且经过适当的调整有Ki=Li,i=1,2...,r
定理2:李Poisson代数T存在泛覆盖当且仅当T是完全的.
定理3:设T是完全的李Poisson代数,则Aut(T)→{h∈Aut(u(T))|h(Ker(u))=Ker(u)}:g→u(g)是一个群同构.如果CT=0,则Aut(T)≌Aut(u(T)).
其他文献
超立方体(Qn)和k-ary n-立方体(Qkn)是常见的网络拓扑结构.它们具有很多优良的性质,如递归结构,结构对称,网络寻路算法简单等特点.环和线性阵列是并行分布计算最基本的两个网络
本文主要考虑两台同类机排序覆盖博弈问题的Nash均衡和强Nash均衡。每个参与者(工件)的个人目标是极小化自己的个人成本,该成本定义为该工件所在机器的负载,参与者可以选择加工
当今随着电子商务的飞速发展和日益成熟,网上、网下双营销渠道模式正被更多的企业采用。当网售渠道分别由制造商、零售商、以及除制造商和零售商之外的第三方负责时,该双营销渠道分别为制造商双渠道(M模式)、零售商双渠道(R模式)、以及第三方双渠道(T模式)。两条双渠道供应链之间存在不同渠道之间的竞争和上下游企业之间的Stackelberg博弈,产品如何定价成为企业界和学术界关心的问题。在市场需求是确定的环境
本文在已有的二元运算代数的基础上讨论了2-次泛代数的相关性质,进一步给出了n-次泛代数的理想定义.将在n-次泛代数中深入的讨论理想的若干性质,并试图给出n-次泛代数关于理想
本文研究了带能量约束的平行机排序问题:给定m台同型平行机(identicalmachines)和一个能量消耗上限E,每台机器可以在给定p个离散速度{s1,s2,…,sp}上运行,如果机器以速度sk运行,单位
设域F为特征p>2的域,本文首先介绍了一些模李超代数的基础知识,定义了W(m,q,n)型模李超代数和它的齐次导子,构造了一类广义的无限维模李超代数W(m,q,n),并且给出了W(m,q,n)的
本文主要对一类具有负指数非线性边界条件的椭圆方程进行了研究,其应用背景来源于微机电系统(MEMS)工程技术问题.在此我们主要讨论方程解的存在性与系统中参数川的关系,特别我们
因经济系统本身的非线性和不确定性,使得一般的线性模型预测结果误差很大.而神经网络作为一种优良的非线性函数逼近工具,因其内在的非线性品质、自组织、自学习、强鲁棒性、