约束条件下的线性贝叶斯估计

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:moneyNUMBER_1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
线性模型可以描述生物、医学、经济等许多领域的现象,是现代统计学中应用最为广泛的的模型之一。无约束条件下,线性模型的参数估计方法已经十分成熟,但是在许多情况下需要对约束条件下的参数进行估计。目前对施加约束条件的参数估计有最小二乘估计,有偏估计和数值解,其中最小二乘估计满足无偏性,但是在复共线性问题上表现不理想,而有偏估计则是牺牲无偏性来减小估计量的方差。  针对上述情况,本文从贝叶斯的角度提出了新的无偏估计——约束线性贝叶斯估计。首先给出约束最小二乘估计的表达式,然后在约束最小二乘估计的基础上定义约束线性贝叶斯估计的形式并且获得表达式,最后证明在均方误差矩阵和均方误差准则下,约束线性贝叶斯估计优于约束最小二乘估计。  应用贝叶斯方法计算参数估计值时,通常会遇到积分无法计算的情况,难以求得贝叶斯估计的显示表达式,因此采用蒙特卡罗模拟获得数值解。本文在给定不同先验分布情形下,比较约束最小二乘估计、约束线性贝叶斯估计与贝叶斯估计的距离,可以发现约束线性贝叶斯估计与贝叶斯估计的距离不大于约束最小二乘估计与贝叶斯估计的距离;随着样本容量的增大,约束线性贝叶斯估计与贝叶斯估计的距离减小;不同先验分布的分散程度对约束线性贝叶斯估计的趋近程度有不同的影响。最后,文章用硅酸盐水泥的实际数据进一步说明约束线性贝叶斯估计相对于约束最小二乘估计的优越性。
其他文献
噪声在自然界中广泛存在,通常会对有用信号或信息产生随机干扰,它反映了微观运动对宏观变量演化过程的杂乱无规作用。通常情况下噪声被认为是消极有害的干扰,然而通过研究噪声对
“曹氏风筝工艺”融民间文化、宫廷艺术、南北扎制技术的精华于一体,形成了独特的风格。其制作流程为:扎、糊、绘、放,工艺具有独到之处。其技艺保存了21首扎制口诀及20种制
<正>为了让党建更好融入企业中心工作,让党支部建设与安全生产工作有效融合,并在安全工作中发挥作用,国网吉林四平供电公司充分发挥央企"六个力量",不断转变新观念,谋求新思
本文通过对荣华二采区10
期刊
科学技术的发展日新月异,人们与互联网的联系越来越紧密,随着智能设备的普及,人们在使用智能设备的过程中不断产生大量的文本数据,如何从这些文本数据中汲取我们所需的信息,
金融风险财政化就是政府采用一些政策手段来规避和化解金融风险,把金融行业的风险转嫁到政府身上,这种现象在国内外都经常出现,是市场经济体制不健全的必然结果。在我国,金融