论文部分内容阅读
传统的频谱分析仪面对愈加复杂的信号检测环境难免力不从心,对射频动态信号、瞬时突发信号等的检测始终存在“死区时间”问题,实时频谱分析仪的出现解决了这一难题,它能够实时处理较大带宽的信号,在时域、频域、调制域等多域对信号进行全面分析。不过,面对信号检测需求的不断提升,如何提高实时频谱分析仪对于短暂瞬时信号的捕获和分析能力逐渐成为大家关注和研究的重点。以实时频谱分析技术为研究背景,重叠率和100%POI(截获概率)是体现系统对于短暂瞬时信号捕获和分析能力的重要指标,面对如何在实时分析带宽较大、高速实时处理数据的情况下提升重叠率和100%POI指标的问题,本文提出了一种基于ADC+FPGA+DDR4硬件平台的并行架构数字信号频域处理电路设计方案。并行架构数字信号频域处理方案是利用延时控制将IQ基带数据根据重叠率合理分配为并行多路,然后采用并行架构可变重叠帧设计对应进行重叠处理。重叠处理后的IQ基带数据其实际数据率成倍提升,远超系统的高速时钟频率,因此,后续的FFT计算以及检波处理均采用并行架构,以此分担数据处理的压力。最后根据检波方式将检波输出进一步处理后得到最终的检波结果。并行架构的可变重叠帧设计主要是控制双口RAM的读写过程,通过地址回读的方式实现,地址回读数由重叠率和并行路数共同决定。并行架构下FFT计算过程则包含了并行架构下数据同步控制、FFT IP核计算、幅值计算、对数计算和输出顺序调整几个部分。并行架构检波设计有正峰值、负峰值和平均值三种检波方式,包括了并行架构下数据同步控制、基于开关结构的检波处理、检波方式控制、并行检波输出结果合并几个部分。本课题在系统设计和仿真实验等过程使用了Vivado、MATLAB、modelsim等软件,利用信号源、频谱分析仪、示波器等对系统进行调试,验证了系统指标100%POI达到10.24μs,提高了系统对于短时突发信号的捕获分析能力。