论文部分内容阅读
提高内燃机效率不仅可以有效减少石油供应紧张的压力,还可以缓解由于CO2排放带来的环境压力。因此,在世界范围内,如何进一步提高内燃机效率已成为内燃机技术最具挑战的课题,受到广泛关注。但是,目前内燃机最高有效热效率仅略大于40%,而内燃机不经“根本性”改造,最大有效热效率很难超过60%。制约活塞式内燃机效率的一个重要原因是其“非约束燃烧”过程损失的做功潜力,这个损失比例高达燃料初始做功潜力的2025%。因此,理解该损失过程并探索降低损失、最大化‘火用’利用率的方法是今后进一步提高内燃机热效率的新方向。本文结合实验和化学动力学数值模拟,详细研究了内燃机“非约束燃烧”的‘火用’损失过程,探索了最小化内燃机‘火用’损失、最大化‘火用’/功转化效率的新途径。为更好地描述内燃机燃烧过程的‘火用’损失机理,本文创新性地发展了一种计算非平衡态燃烧过程的化学动力学‘火用’损失模型,基于化学动力学和非平衡态热力学中的局部热力学平衡原理,首次明确了复杂化学动力学中每一步基元反应的‘火用’损失,为进一步确定内燃机非平衡态化学反应中最主要的‘火用’损失源、探索减少‘火用’损失的控制方法提供了理论依据。研究并筛选了以正庚烷为例的基础燃料详细的化学动力学模型,确定了其燃烧过程的化学动力学‘火用’损失机理,结合‘火用’损失源和化学动力学特点,归纳总结出了基础燃料燃烧过程的损失特征,并进一步研究了燃烧过程‘火用’损失源的影响因素,探索了高效燃烧反应的约束条件。基于对‘火用’损失源及控制方法的研究,以减少‘火用’损失、节约能量为目的,探索了进一步降低内燃机燃烧过程‘火用’损失的方法,提出了高温无氧燃料重整理念,并从理论上探讨了高温无氧燃料重整的可行性及其在节约系统‘火用’方面的优势。设计和搭建了满足燃料改性要求的化学动力学流动试验台,通过对比实验和模拟结果,讨论了高温无氧重整理念的正确性以及实验系统的可行性。基于对‘火用’损失源的分析和高温无氧燃料重整的研究,探索了提高内燃机热效率的新途径,提出了一种可行的高效内燃机燃烧原理--重整燃料分子均质压燃燃烧(RM-HCCI),并分别从(1)初始燃料化学‘火用’;(2)燃烧过程‘火用’损失;(3)滞燃期和燃烧持续期;(4)‘火用’/功转化过程等几个方面讨论了RM-HCCI内燃机燃烧原理所具有的理论优势。