盐渍土环境下配置HRB500级钢筋高铁桥墩抗震性能分析

来源 :郑州大学 | 被引量 : 0次 | 上传用户:liuguoqiangswu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
桥墩是桥梁结构的主要承重构件,也是地震作用下的重要抗侧力构件。本文以我国盐渍土环境高速铁路桥梁面临的地震安全问题为背景,研究了盐渍土环境下配置HRB500级钢筋高铁桥墩材料耐久性损伤对其抗震性能的影响,基于ABAQUS软件进行数值仿真分析,研究了盐渍土环境下高铁桥墩全寿命周期内顺桥向及横桥向地震易损性。本文主要研究内容及结论如下:(1)分析了盐渍土环境下的氯离子侵蚀机理,考虑钢筋锈蚀选取合理的材料本构关系,建立锈蚀钢筋混凝土柱和配置HRB500级圆端形墩柱有限元模型,通过低周反复荷载数值模拟,将计算结果和已有试验数据进行比较,验证材料本构关系及建模方式合理性。(2)采用正交试验设计不同参数试件模型,分析了纵筋和箍筋配筋率、箍筋等级及轴压比对HRB500级圆端形墩柱抗震性能的影响。结果表明:纵筋配筋率、轴压比及箍筋等级影响较为显著。随着纵筋配筋率增大,墩柱极限承载力不断增大,纵筋配筋率从0.6%增加到1.6%时,墩柱极限承载力提升了71.73%;随着轴压比增大,墩柱位移延性系数有所减小,当轴压比从0.05增加到0.25时,墩柱位移延性系数下降22.93%;随着箍筋等级提高,墩柱耗能能力增强。(3)考虑服役期内耐久性损伤,依托实际工程桥墩,进行顺桥向和横桥向非线性时程分析,并研究墩顶位移、墩底剪力和等效塑性应变等地震响应随服役时间变化情况。结果表明:服役期内桥墩在地震作用下,墩顶位移随着服役年限增加均不断增大,且顺桥向增大程度大于横桥向;墩底剪力随着服役年限增加,变化程度相对较小;桥墩墩底等效塑性应变值较大,且随着服役年限增加不断增大。(4)基于增量动力分析(IDA)法,建立了全寿命周期内不同地震方向作用下桥墩各损伤状态的地震易损性曲面,对比分析不同地震输入方向对桥墩损伤概率的影响。结果表明:顺桥向及横桥向地震作用下各损伤状态超越概率随服役时间增加而增大,且随PGA增大而增大,顺桥向增大程度大于横桥向。以PGA为1.0g为例,服役100年的桥墩在顺桥向地震作用下发生完全破坏状态的超越概率比成桥时增大20.59%,横桥向地震作用下增大4.54%。
其他文献
镁锂合金由于具有低密度、高比强度和比刚度、良好的阻尼减震性能、电磁屏蔽能力和成形性等特点,因此在汽车、航空航天、电子通讯等领域具有广阔的应用前景。但是镁锂合金具有绝对强度低、耐蚀性差、高温力学性能不稳定等缺点,又限制了镁锂金的应用。本文以前人研究过的镁锂合金为基础,为获得综合性能优良的超轻镁锂合金,制备了 Mg-xLi-3Al-2Zn-0.2Y(x=5,8,11)和 Mg-11Li-3Al-RE
铝青铜合金具有良好的强度、耐腐蚀性能和耐磨性能,在船舶装置、海水处理装置等结构中具有广泛应用前景。对于形状较为复杂的大型整体结构件,传统的加工方法主要采用铸造、锻造、焊接、螺栓连接以及机械加工等,这使得材料利用率低、制造成本高且生产周期长。增材制造技术是近年来快速发展的先进制造技术之一,电弧增材制造技术(Wire arc additive manufacturing,WAAM)因效率高、成本低、致
多层金属复合材料内高体积分数的界面赋予了材料优异的结构与功能特性,可有效结合多种材料的物理、化学、力学等性能,促进了材料综合性能的提高,因此受到广泛关注。多层复合金属材料内,复合金属间的力学性能差异使复合界面存在应力不相容性,界面层金属承受附加的剪切应力出现剪切带,对材料物理、化学和力学性能具有显著影响。剪切带作为金属轧制变形过程中形成的一种重要微结构,在单相金属中剪切带的尺寸、密度、角度及内部取
电阻抗层析成像(Electrical Impedance Tomography,EIT)是一种旨在重建被测区域内复杂电导率分布的可视化测量技术。它具有非侵入、无辐射、成像快、低成本等优点,被广泛应用于工业过程成像、材料无损检测、地球物理勘探和生物医学成像等领域。然而,EIT图像重建是一个不适定性的逆问题,严重阻碍了EIT技术的发展。为了解决这个问题,本文对EIT图像重建的正则化方法进一步改进。首先
钛合金因其具有比重小、比强度高等优点被广泛应用在航空航天领域,但是常规钛合金在高温环境下容易发生“钛火”事故,限制了钛合金在航空发动机领域的应用和发展。Ti40阻燃钛合金因为具有优异的阻燃性能、良好的力学性能受到越来越广泛的关注。但是Ti40钛合金金属流动性差,晶界易开裂,热加工性能较差,限制了它的进一步推广应用。而激光立体成形技术具有加工材料种类广泛、高效低成本的优势,在Ti40钛合金制造中具有
慢性粒细胞白血病(Chronic Myelogenous Leukemia,CML)是发生在造血干细胞中的血液系统恶性克隆增殖性疾病。超过90%的CML患者在9号染色体的长臂上的c-Abl原癌基因易位至22号染色体长臂的Bcr断裂点,形成Bcr-Abl融合基因。并且由该基因编码的蛋白质可以增强酪氨酸激酶的活性,使底物磷酸化,激活下游的的信号通路,包括细胞外信号调节激酶(Erk1/2)、磷脂酰肌醇3
微纳米结构的Cu2O是一种直接型P型半导体,可应用在光催化,水的光解,太阳能电池,生物传感器,杀菌等方面。不同形貌尺寸的微纳米结构Cu2O的物理化学性能有很大差别,若实现对晶体结构、尺寸和形貌等诸多晶体结构参数进行有效地控制,这有很大的实际意义。本文采用绿色还原剂没食子酸,用液相还原法简便可控合成了微纳米结构Cu2O。SnO2具有较高的理论比容量,可以应用到锂离子电池中。但是由于其在循环过程中会产
转子系统是旋转机械的核心部件,轴承是旋转机械中最常用的支撑传动零部件。现代旋转机械中转静子的相对转速越来越高、转静子之间的间隙越来越小,因此,如何有效地减少转静子接触面间摩擦具有重要的意义。而近年来,近场超声悬浮效应作为一种新颖的抑制振动的方法,被广泛应用于各种领域,其具有超声悬浮、超声减摩等作用,因此研究超声挤压轴承抑制转子振动具有重要意义。本文具体研究内容如下:(1)研究了一种新型的超声挤压轴
随着经济快速发展,工业废水、生活污水、农业废水对水资源的污染日益严重,造成水资源中含有很多难以分解的化合物,从而对生态产生较大危害。光催化技术可以通过降解这些化合物而避免污水的危害,Ti O2是一种新型光催化材料,其物理化学活性稳定、无毒害。但Ti O2的禁带宽度较大,对太阳光的吸收范围较小,以及电子-空穴对的复合率高,从而影响了其光催化性能。本文采用溶胶凝胶法制备纳米Ti O2,优化了其工艺路线
钢管混凝土具有承载力高、塑性韧性好等优点,已被广泛运用。再生混凝土是由废弃混凝土配制而成的,它的开发和应用可减少天然骨料的消耗,节约资源。自密实混凝土具有无需振捣、自动密实的特性。将再生自密实混凝土灌注入钢管中形成钢管再生自密实混凝土,不仅能使钢材和混凝土两种材料的性能得到更加充分的发挥,而且可以促进废弃混凝土的回收再利用,降低工程成本。因此,本文对圆钢管再生自密实混凝土轴压柱的力学性能进行试验研