差分方程的振动性、渐近性及正解存在性研究

来源 :燕山大学 | 被引量 : 1次 | 上传用户:yxl122702985
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着科学技术的发展,差分方程理论在现代物理学、生物学、经济学、控制工程等领域中有着广泛的应用。差分方程的振动性理论、渐近性理论和正解存在性理论,是差分方程定性理论的重要内容,因此对其进行研究具有极大的理论意义和实用价值。  论文分别研究了非线性多时滞中立型差分方程、具有连续变量的非线性中立型差分方程和高阶中立型差分方程的定性问题。  首先对一阶、二阶非线性多时滞中立型差分方程解的振动性和渐近性进行了研究,建立方程解振动的判别准则,并给出方程非振动解的渐近性的一个充分条件;讨论具有正负系数的多时滞中立型差分方程,获得方程振动的充分条件。  其次讨论具有连续变量的非线性中立型差分方程。研究了具有连续变量的二阶非线性中立型差分方程,获得其有界解振动的两个充分条件;讨论了另一类具有连续变量的二阶非线性中立型差分方程,给出其解振动及差分算子振动的三个充分条件,同时把该方程推广到偶数阶情形,讨论了具有连续变量的高阶中立型差分方程的有界解振动性。  最后考虑高阶中立型差分方程。讨论具有可变时滞的高阶中立型差分方程,建立该方程振动的两个充分条件;运用不动点原理研究了高阶非自治中立型差分方程最终正解的存在性问题,得到了较已有文献更简洁的一个充分条件。
其他文献
该文介绍了当今国内外文献中有关预条件共轭梯度法(PCG法)的新成果,并在此基础上对预条件共轭梯度法、特别是多项式预条件共轭梯度法时行了进一步研究,探讨了预条件共轭梯度
人们研究同宿轨分岔的问题已有很久的历史.前人从几何的观点出发,利用Poincaré映射去构造Melnikov函数,函数的零点就对应着同宿轨的保持.人们也常称该方法为Melnikov方法.后来,人
为了研究机织织物的几何和力学性能,该文进一步提出建立真实机织织物结构几何模型的数学方法.首先对被施加外部荷载的织物建立数学模型,相应的机织织物结构所到的总势能U(包