【摘 要】
:
MOSFET功率器件具有驱动方式简单、易集成、易并联、输入阻抗高以及开关响应快等优点,广泛应用在交通运输、生活娱乐以及军事航空等各个领域。但是由于其比导通电阻(Ron,sp)与击穿电压(BV)存在着2.5次方的矛盾关系,于是随着击穿电压的升高,导通电阻显著增加,这严重的限制了MOSFET在高压大功率领域的应用。本文围绕如何改善横向MOSFET功率器件中Ron,sp与BV的矛盾关系,以及如何降低曲率
论文部分内容阅读
MOSFET功率器件具有驱动方式简单、易集成、易并联、输入阻抗高以及开关响应快等优点,广泛应用在交通运输、生活娱乐以及军事航空等各个领域。但是由于其比导通电阻(Ron,sp)与击穿电压(BV)存在着2.5次方的矛盾关系,于是随着击穿电压的升高,导通电阻显著增加,这严重的限制了MOSFET在高压大功率领域的应用。本文围绕如何改善横向MOSFET功率器件中Ron,sp与BV的矛盾关系,以及如何降低曲率效应的影响,提高MOSFET功率器件的击穿电压。提出了三种MOSFET功率器件新结构:(1)一种增强耗尽的n层堆叠LDMOS器件结构。该结构由多个独立的LDMOS器件堆叠而成,通过堆叠形成的多条电流路径大大增加了器件的导通电流。并且在各个LDMOS的衬底作用下,其每条电流路径内的电流独立工作而不会互相干扰。另外在器件内加入P埋层以及P/N-top区能有效改善器件源漏附近的电场拥挤现象,从而提高器件的击穿电压。模拟结果表明,2层堆叠LDMOS的击穿电压为356V,比导通电阻为13.56m(?)·cm2,相比于C-LDMOS分别改善了26%和71%。并且,随着堆叠层数的增加,n层堆叠LDMOS器件的比导通电阻将趋于常规结构的1/n。(2)一种具有多埋层调制的槽栅型LDMOS。通过在漂移区内加入三个长度不等的P型埋层,利用埋层对漂移区的耗尽作用来提高漂移区的掺杂浓度,从而降低该器件的比导通电阻。并且通过埋层在器件内部产生新的电场峰值,改善了器件内的电场分布,从而提高了耐压特性。模拟结果表明,该结构在关断时的击穿电压为678V,在导通时比导通电阻为49.4m(?)·cm2,与常规结构相比分别改善了104%和56%。(3)一种具有多个浅介质槽的终端结构。该结构在终端区加入多个等间距的浅介质槽,故能在终端区的表面产生多个电场峰值,从而优化了终端区的表面电场,提高BV值。模拟结果表明,该结构的击穿电压为716V,较传统保护环技术改善了119%且达到了元胞的95%,终端长度为103μm,同具有相同参数的等高浅槽终端结构相比,提升了11%。
其他文献
由于波分复用(Wave Division Multiplexing)通信系统的传输容量已逐渐逼近非线性香农极限,以少模光纤(FMF)为代表的模分复用技术与多芯光纤(MCF)为代表的空分复用相结合技术开始出现,解决了传输容量不足的问题。四波混频(FWM)作为少模光纤内部的一种非线性效应,在早期光通信网络中被视为限制通信系统传输性能的主要因素,但FWM也能广泛应用于光放大、模式转换、波长转换等多个研究
卫星导航产业正随着科技的腾飞而迅速发展,作为卫星导航产业中必不可少的定位授时终端—GPS接收机的需求日益增加。如何科学有效地验证GPS接收机的性能也逐渐成为导航产业的热门问题。GPS模拟器能够有效帮助GPS接收机进行验证仿真,是分析GPS接收机性能的重要工具,所以对于GPS模拟器的研究与实现具有较大的工程意义。本文通过FPGA+ARM平台进行GPS L1频点的实时再生模拟器设计,完成对GPS L1
随着现代无线通讯技术的发展,智能终端设备也得以迅速普及。这导致了智能终端设备保有量的暴增。再加上物联网(Internet of Things,IoTs)技术的不断成熟,使得智能终端设备所使用的数据流量开始呈现爆发式的增长,人们对于高速数据传输的迫切需求与通讯时延之间的矛盾愈演愈烈。为满足智能终端设备日益增长的无线通信需求,以蜂窝网络基础的端到端(Device-to-Device,D2D)通信技术被
随着北斗三号系统的建设完成,北斗系统在各个领域的重要作用日益凸显,但其局限性也开始显露。在室内环境下,卫星信号被遮蔽,无法进行导航定位。甚至在室外环境下,有时也会受到高大的地形地物的影响,定位的精度和连续性随之下降。伪卫星技术作为GNSS系统的主流辅助定位技术,既能独立组网用于室内高精度定位,又能作为北斗系统的地基增强系统,与北斗系统进行无缝融合定位。因此伪卫星技术与北斗系统相结合,可以弥补北斗系
随着无人机技术发展迅猛,使得无人机在生产生活中被广泛使用,但无人机的不规范使用对航空管制和公共安全造成了威胁。因此,如何对无人机进行有效地检测成为了亟待解决的问题。由于无人机具有飞行高度低、飞行速度慢、不易被发现的特点。同时无人机飞行环境十分复杂,存在大量杂波和干扰,传统的雷达检测方法很难将其从复杂的环境中检测出来。因此,本文提出知识辅助的反无人机雷达检测方法,提高无人机目标检测性能,具体如下:(
随着科学技术的高速发展,人工智能已经广泛应用到医疗、交通、金融等诸多领域,智能看护机器人、自动驾驶汽车等形式多样的智能体在人类生活中也扮演着越来越重要的角色。然而人类在享受人工智能带来的便利之时,也需要解决其带来的伦理问题。例如,机器人误将工人识别为钢板切割、智能音箱建议其使用者自杀、无人驾驶汽车失控致人死亡等。因此,如何确保智能体具备遵守人类基本伦理规范的能力,并与人类进行恰当而友好的互动,是当
随着移动通信、物联网应用的快速发展,用户对应用服务质量提出了更高的要求。边缘计算的出现使得应用服务可以部署在靠近用户的位置,从而降低时延并减少网络负载,提升服务质量。在边缘计算的场景下,不同安全域下的边缘节点的应用往往只为区域内用户提供服务,智能应用的模型参数,用户缓存的数据等保存在本地边缘节点。当用户的地理位置或者网络连接发生变化时,业务的连续性无法保障。因此,为了提供更优质的边缘服务,在保证数
近年来,由于超大规模集成电路(VLSI)制造技术的飞速进步,集成电路的规模与日俱增,使得集成芯片的性能大幅度提升。由于VLSI阵列具备规则的结构以及便捷的实现方式等优势,在微型计算机、雷达、控制等重要领域得到了广泛运用。然而,随着集成电路日趋于复杂,使得集成系统出现问题的可能性也随之增加,从而无法有效的保障集成系统的稳定性。因此,在确保VLSI满足高性能、高速度要求的前提下,为了提高多处理器阵列的
本文通过电弧熔炼与甩带的方法制备出了具有密排六方结构的稀土高熵合金Gd Tb Ho Er、GdTbHoErY、Gd Tb Ho Er La、Gd Tb Ho Er Pr和Gd Tb Ho Er La Y。主要对这些高熵合金做了三个方面的工作:一、通过XRD、SEM和TEM证明了稀土高熵合金GdTbHoErY具有单相的密排六方结构,并且绘制了其磁性相图,研究了其相变类型和磁热效应。二、在稀土高熵合金
空天地海一体化是未来通信发展的重要战略,水下通信作为其中重要的一环,引起了各个国家的极大兴趣。水下无线通信技术主要分为三种:微波通信、水声通信和水下光通信。水下无线光通信具有大带宽、抗干扰能力强、保密性好、体积小等特点,在军事和宽带接入网等领域具有很大的应用潜力。实际的水下无线光通信链路中,海水对光具有吸收、散射等衰减特性,且对于光的影响随波长改变,例如海水中存在蓝绿光谱透射窗(450~550nm