MoCu负载的ZSM-5多级孔分子筛催化藻类模化物水热转化制芳烃的研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:MaoZeDongDaShaBi2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
藻类水热液化制芳烃是在资源枯竭环境恶化的前提下,绿色环保的制备常用化工原料芳烃的最有效途径,而强水热稳定性高芳烃选择性的催化剂一直是研究热点。本论文从催化剂的选择、催化剂的改性及反应工艺条件优化等方面着手,研究制备多级孔、负载双金属和反应的温度及其他条件的影响。首先考察了不同催化剂对藻类含氧化合物模型化合物硬脂酸水热转化制芳烃反应性能的影响。选用HZSM-5、多级孔HZ-0.2M、单金属负载的Z-0.2M和双金属负载的Z-0.2M。在水热气化的环境下对几种催化剂进行了活性测试,发现Mo和Cu负载后对芳烃的产率有积极的影响,经过金属负载量及负载顺序的筛选,最终Mo0.02Cu0.01/Z-0.2M分子筛因其合适的孔道结构、合适的酸性特征、良好的水热稳定性和更多的活性中心表现出了最好的脱氧芳构化活性,Mo0.02Cu0.01/Z-0.2M的甲苯、乙苯、二甲苯(即TEX)的总摩尔产率达到了140.73%。在近/超临界水环境下进行水热液化是藻类等高含水生物质制备生物油的主要方法,对于催化剂的水热稳定性有很高的要求。考察了不同催化剂催化硬脂酸水热液化的活性;由于脂肪酸不溶于水,因此相同温度和相同催化剂条件下反应的产率结果和水热气化反应大致相同,活性最好的催化剂依然为Mo0.02Cu0.01/Z-0.2M,总TEX产率138.68%。最后,考察了加入了藻类含氮模型化合物十六酰胺对反应的影响;结果表明,当反应温度为450℃、反应环境为水热液化时,Mo0.02Cu0.01/Z-0.2M催化剂表现出了最适宜催化活性,总TEX摩尔产率达到了100.98%。
其他文献
随着纳米加工技术的发展,由亚波长单元结构组成的超构表面(Metasurface)实现了光学设计原理的新突破,并且提供了全新的光学调控手段。其中,超构透镜(Metalens)作为典型的一类应用,具有极轻薄的结构特征,而高性能的超构透镜有希望投入实际的应用生产中,改善现有的光学系统。本文围绕超构透镜的加工制备和性能开展系统研究,针对不同的材料体系下超透透镜的性能提升及应用场景需求,进行了微纳加工工艺的
因化石燃料消耗带来的污染问题日愈加重,氢能由于清洁性、可再生性以及储能高等特点,成为了人们的研究重点。传统的电解水制氢体系因成本高、淡水资源压力大以及耗能高等因素大大限制了其在工业化方面的大范围应用。因此电解水制氢催化剂的研究重点在于开发低成本的电解水制氢体系以及降低能耗的催化剂。本文以钴基过渡金属催化剂为基础,探究钴基过渡金属催化剂在电解制氢方面的应用,具体研究内容如下:(1)通过水热合成和低温
伸直链晶体(ECC)具有高熔点和高结晶度,是聚合物热力学上最稳定的晶体结构。传统上ECC结构需要在高压高温下由熔体结晶获得,工艺条件苛刻,难以批量制备。我们课题组基于包合物结构前驱体的方法,实现了常压下,粉末状ECC材料的制备。本论文以聚(ε-己内酯)(PCL)为研究对象,采用同样的思路制备了PCL-ECC材料,探索PCL-ECC粉末加工为高强度材料的工艺。主要的研究结果如下:首先,我们通过包合物
随着现代工业的发展和化石燃料的大量燃烧,温室气体CO2的排放量逐年增加,带来了全球气温变暖等一系列环境问题。光催化还原CO2可以利用太阳光将CO2转化为有工业应用价值的碳氢化学产品,被研究者们寄予厚望。其中,n型半导体CeO2较强的氧化还原能力,和对CO2有一定的吸附能力且丰富可调控的表面氧空位,使其成为一种具有潜在应用前景的CO2还原光催化剂。但是,CeO2存在禁带宽度较大,电子传导率差且高温下
α-烯烃是一种重要的有机化工原料,可以合成高级润滑油基础油、燃料油润滑油的添加剂、还可以合成高性能塑料、高级表面活性剂、有机溶剂等重要的化工产品。随着石油化工行业的高速发展,市场需求持续增大,对于α-烯烃的需求量迅速增长,乙烯齐聚法作为生产低碳α-烯烃的重要方法之一,受到高度关注。本文利用水热合成法成功合成了以镍为金属节点的1D-S-Ni(单镍)、1D-D-Ni(双镍)、1D-M-Ni(多镍)和1
工业革命以来,全球CO2过度排放产生的气候变化问题日益严峻。目前如何缓解这一问题成为全球关注的焦点。CO2的捕获和转化已被认为是一种有望缓解这一问题的途径。将捕获得到的CO2输入到地下地质构造中永久封存是一种选择,而如何再将其进一步转化为有用的产品,实现高价值化利用是当前研究的重点。将CO2转化为有价值的产品主要方法有光催化、电催化、加氢和化学固定。特别是,光催化CO2还原被认为是一种绿色环保无需
印度板块与欧亚板块的持续碰撞造就了世界上最高、体积最大的青藏高原,然而高原与周缘块体深部结构、相互作用时的变形机制至今尚不明确。为此,本文以青藏高原东缘为例,采用了该区域目前最密集的台阵数据,使用了三种不同的地震学方法,包括震源机制解与应力场反演、接收函数反演地壳各向异性以及面波各向异性成像来研究高原东缘壳内不同深度的结构和变形特征。同时结合了前人在该区域取得的研究成果进行对比,来约束高原东缘不同
聚碳酸酯(PC)具有优异的透光性、抗冲击性以及热稳定性,现已成为五大通用工程塑料中消费增速最快的塑料。传统的PC生产工艺因使用到剧毒光气正在逐渐被取代,因此,开发环保、绿色的PC合成新工艺具有重要意义。碳酸二甲酯一步法是更加经济环保的PC合成工艺,然而碳酸二甲酯与双酚A反应转化率低、甲酯化产物选择性差,限制了高分子量PC的合成。针对上述问题,本文开展了乙酰丙酮金属盐催化碳酸二甲酯与双酚A合成PC中
环境电化学的特征之处在于,一是所涉及反应普遍为多步骤、多电子的不可逆电极过程,这些反应的电流?电势(j?E)关系是传统电化学中的薄弱环节,制约了对环境溶液体系中电极反应的研究及应用;二是环境溶液普遍为稀溶液,包含多种传质限制因素。为此,本论文围绕环境溶液体系电极界面过程,逐步递进地研究电极反应的电子传递过程、反应物传质过程、以及H+/OH-传质过程,由简入繁地建立界面过程的系列j?E数学方程,发展
金属卤化物钙钛矿太阳能电池(PSCs)正在成为下一代光伏技术有希望的候选。过去十年间,其光电转换效率已从3.8%提高到25%以上。虽然在性能上有显著提高,电流—电压迟滞和长期稳定性仍然是阻碍钙钛矿太阳能电池商业化的主要问题。迟滞和稳定性都与钙钛矿材料中的离子缺陷迁移有关。此外,有机—无机杂化钙钛矿中的铁电极化也可能导致迟滞效应。本文结合第一性原理计算和理论分析,系统研究了金属卤化物钙钛矿中离子缺陷