论文部分内容阅读
随着工业4.0、物联网、数据挖掘等概念的提出,计算机技术与先进制造业的理念和方法正不断深入融合,基于信息物理系统的智能制造也应运而生,形成以服务为导向、以数据为依托、以人工智能为决策方法的人机协同制造新模式。在智能制造环境下,车间集成各类传感器(测力计、温度器、RFID等)实现车间数据采集,物联网等基础设施实现车间系统互联互通。但由于实际加工环境中的各类扰动,会直接或间接导致生产进程异常,尤其是以多品种、小批量为生产特征的离散车间,其不确定性扰动更为复杂,实时工况的多变更是增加了以调度为关键的车间管控难度,降低了车间生产效率,增加了车间管控成本和不确定性。因此,需要贴近现实车间实际,划分车间扰动异常,定量计算扰动影响程度,并预测可能会发生的扰动,进而基于扰动预警,实现车间扰动发生前的主动调度,避免扰动影响车间作业。同时,需提高扰动事后的车间重调度能力,结合企业生产需求,降低已发生扰动对车间正常运行带来的危害。本文针对这些关键问题,从构建扰动预测模型和设计有效调度方法两方面进行展开,以提高车间运行管控能力。具体内容如下:(1)针对车间扰动,分别从临时性变化、通常环境和显著或不显著改变三个角度阐述车间扰动概念。构建以服务、质量和价格为评价指标,以人、设备、物料和调度为扰动资源要素的层次树多元扰动划分框架,对车间宏观扰动进行了系统分类。基于改进的故障失效模式和影响分析,提出一种新的扰动分析模型—扰动风险向量。定义了平面偏向向量的风险向量优先级,有效降低扰动风险数值重复率,实现了不同扰动的差异化。并以此为基础,设计车间扰动风险向量及扰动评估方法。提出以三角函数和梯形函数为隶属度函数的模糊层次分析法以克服主观权重问题。应用差异性指数划分扰动数值,发现关键扰动,为车间管理员高效定位车间扰动和预防控制扰动提供依据。此外,三维矢量的平面拟合为分析不同指标扰动的分布和差异提供了方法。(2)针对数据背后的潜在扰动,依据实体物流操作过程的等待加工时间、机床准备时间、加工时间、等待转移时间和转移时间分别建立理想作业时间流和实际作业时间流数学模型,并以此为基础提出潜在扰动时间概念,反映了扰动对离散车间作业的影响。从车间系统功能出发,解析离散车间数据源,并对其进行统一分类。建立离散车间数据流框架,提出基于数据挖掘的离散车间潜在扰动预测方法,完成了由扰动预测到车间生产的闭环控制。考虑到噪声冗余数据,提出混合贝叶斯的决策树算法用于离散车间扰动预测。实验结果验证了所提方法能有效发掘潜在扰动并指导车间生产,同时所提算法相较其它算法具有更优的预测精度。(3)针对扰动预测下的高效车间作业静态调度问题,提出了以最大完工时间和总延迟为优化目标,建立了混合进化算法和种群知识的离散作业车间多目标调度求解模型。由优化目标和属性归纳确定工件工序属性(工序特征、加工时间、剩余加工时间、交货期和优先级),通过NSGA-Ⅱ混合模拟退火算法获取优秀种群个体,应用优先级类权重实现种群的知识挖掘。提出增添排序法ADSM,重新局部调整工序,获取基于知识的初始种群个体,避免了知识挖掘下工序不足或过饱和问题。实验比较了其它种群个体在不同迭代次数和不同种群大小下优化目标和帕累托性能指标,结果表明在有限的迭代次数下,本文所提方法能够获得更优的帕累托解。(4)针对已发生扰动对车间作业的影响,深入研究了扰动下车间重调度问题,给出离散车间扰动下重调度理论框架和关键技术。提出原计划接受度和重调度触发度概念和数学模型,建立以交货期和扰动时间变化率为基准的重调度驱动机制。应用指标加权法提出以最大完工时间、质量损失指数和工序加工成本为一体的优化目标函数。设计并改进模拟退火遗传算法,以基准案例对优化目标函数值和收敛性进行算法性能测试,以某电梯零部件智能制造车间调度实例进行重调度验证,结果表明所提算法和重调度策略优越且有效。开发了离散车间调度平台,并介绍了系统主要功能模块。