智能网联汽车安全关键设计的系统理论过程分析

来源 :湖南大学 | 被引量 : 0次 | 上传用户:jiangyao366
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
车辆的互联化、自治化、共享化和电动化推动了智能网联汽车(Intelligent Connected Vehicles,ICV)的出现,智能网联汽车为日常生活带来便利的同时,也面临着功能损坏、信息泄漏等一系列危害。传统的危害分析方法(如故障树等)只关注组件故障,忽略了组件之间异常交互对系统产生的影响,因此无法对复杂的嵌入式系统进行危害分析。为了解决这个问题,系统理论过程分析(System Theory Process Analysis,STPA)应运而生。STPA是一种用以避免工业系统缺陷的危害分析方法,使用STPA对智能网联汽车进行危害分析时,面临着严重的挑战:信息决策与反馈过程的中断、人工智能算法输出的不确定性、信息安全的威胁等。此外,STPA危害分析的结果并未得到量化,无法对危害分析产生的结果进行优先级排序,大大降低了危害分析的效率。针对上述挑战,本文提出了一种新的三阶段危害分析方法STPA-ICV,对危害进行定性分析,以保障智能网联汽车的功能安全和信息安全。STPA-ICV同时将功能安全和信息安全纳入考虑范围,能够被广泛应用于智能网联汽车的多种自适应应用中。STPA-ICV可以为智能网联汽车建立清晰的架构、提高网络带宽,识别出完备的危害场景并提出系统优化策略。本文以自适应巡航控制系统和自动紧急刹车系统为例,展示了使用STPA-ICV进行危害分析的全过程。针对STPA危害结果无法量化的问题,本文提出了Quant-STPA方法,对危害分析结果进行定量分析。Quant-STPA从事故分析树量化思想出发,结合STPA-ICV生成的危害场景树,建立危害和危害场景的逻辑关系,计算出系统级危害的发生概率;Quant-STPA方法定义了衡量危害场景重要度的唯一指标,加速了系统设计的优化时间。本文还通过两个对比试验、一个案例分析,凸显了Quant-STPA的优越性。STPA-ICV和Quant-STPA方法分别对智能网联汽车面临的危害进行了定性分析和定量分析。实验表明,与现有的STPA方法相比,STPA-ICV可以识别更多的危害场景,并且效率更高。此外,与事故分析树相比,Quant-STPA能量化更多危害场景、获得更准确、更客观的量化结果。两种方法都提升了危害分析效率,为智能网联汽车功能安全和信息安全的保障提供了新的可能。
其他文献
随着社会电气化程度的逐渐提高、电力电子技术的快速发展与微电网建设的日益成熟,电能质量问题成为全球关注的热点。电气化轨道的运行、新型电力电子设备的接入与分布式能源并网等行为增多导致稳态与暂态扰动的出现频率及复杂度随之增加,电能质量扰动特征的混叠严重。传统针对单一扰动的识别方式无法满足复合电能质量扰动的分类要求,因此,针对复合电能质量扰动特点完成高准确性与高效率的扰动识别已是当前国内外学者进行电能质量
本文研究的是两类反应扩散传染病模型的动力学性质.我们借助比较原理、微分不等式等方法,确定了系统平衡点的存在性.在此基础上,利用一些文献结果,我们定义了模型的基本再生数R0,通过R0得出平衡点的稳定性性质.具体的工作过程如下:第一章,简要介绍传染病模型与反应扩散方程结合的相关背景和研究意义,解释其结合的必要原因.其中着重说明反应扩散传染病模型的国内外研究现状,并简要说明本文研究的问题与主要内容.第二
随着电网规模的不断扩大,为保障社会用电需求的可靠性,现代电力系统已发展为电力网与信息网深度融合的电力信息物理系统。系统逐渐复杂化的趋势已经无法避免,新的网络攻击方式的出现使得系统安全面临更加严峻的考验。如何在网络攻击环境下定位系统中可能引起连锁故障的节点和线路,进而减少大面积停电的发生已经成为一个关键性问题。由此,对电力信息物理系统进行风险评估具有现实意义。在上述研究背景下,本文主要对系统的建模方
成纤维细胞生长因子(fibroblast growth factor,FGF)通过其受体(fibroblast growth factor receptor,FGFR)FGFR1,FGFR2,FGFR3或FGFR4发出信号,调节细胞生命活动,比如迁移,伤口愈合,增殖,抗凋亡,维持自我更新,耐药性和血管生成。运用FGFs调控细胞行为,已经成为研究热点。然而FGFs合成成本高,热稳定性低,不易储存,使
模块化多电平变流器(Modular Multilevel Converter,MMC)具有模块化设计、容错能力强、开关损耗低等优势,是目前最主流的柔性直流输电变流器拓扑。在高压大功率电能变换、柔性直流输电等领域,MMC子模块(Submodule,SM)数量多,传统检测方法需使用大量传感器,系统结构复杂、成本高,此外,子模块数量过多还会导致系统发生故障的概率升高。功率开关器件是子模块中最易发生故障的
铁路系统凭借其安全快速、节约资源、保护环境、受气候和自然条件影响较小、运输体量大等优势,在当前的交通运输体系中处于举足轻重的位置,为经济和社会快速的发展,承担着非常重要的作用。由于我国铁路系统的日益发展,列车运行次数越来越多、运载量越来越大、运行时速也越来越快,在这种背景下,铁轨受到的压力和磨损会不断增加。再加上铁路的轨道所处环境较为复杂,长时间受到外部自然环境的腐蚀,所以铁轨表面极易产生缺陷。如
长余辉现象是指激发退出后激活中心的荧光保留一段时间的现象。近年来,长余辉荧光粉因其广阔的应用前景(如突发性照明、显示器、多维光学记忆和成像存储)而备受关注。锡酸锌是具有良好传感响应和选择性的功能材料,还可以掺杂稀土离子作为光致发光材料,通常用于固态照明和显示器的三色磷光体。偏锡酸锌具有优异的化学性能、物理性能和机械性能。偏锡酸锌基质原材料较其他荧光材料价格实惠,且合成路线简洁易产业化。鉴于上述优点
酰胺(RCONRR″)类化合物在许多天然产物、农用化学品、多肽、聚合物、蛋白质、生物活性系统和功能材料的组成中起着重要的作用,该化合物也是合成其他重要分子如复杂胺类和杂环类的中间体。因此,酰胺的合成是有机化学研究实验室中应用最广泛的反应之一。近年来,酰胺类化合物的高产率与原子经济性合成引起科研领域的高度重视。传统合成酰胺的方法涉及到羧酸和胺的偶联,该方法往往需要化学计量活性试剂和苛刻的反应条件,并
视频序列中运动目标的跟踪是一个兼具应用价值和理论意义的课题,一直被众多研究者关注。近年来,目标跟踪领域出现了迅速的发展,优秀的方法不断涌现,基于孪生网络的跟踪方法就是其中之一。基于孪生网络的跟踪算法是一种利用特征相似度度量进行目标跟踪的方法,它成功的将离线训练带入目标跟踪领域,获得较高的跟踪速度。其中,区域推荐孪生网络算法(SiamRPN)取得了跟踪精度上的突破,因而成为研究的热点。本文的研究基于
微量掺杂作为一种有效的氧载体改性方式近来被广泛研究,然而其反应动力学方面的研究相对较少。本文结合宏观反应动力学模型和密度泛函理论(DFT)计算,探究了低含量铜掺杂对化学链过程中甲烷还原铁基氧载体的反应动力学和碳形成的影响,并初步评估了低含量镧掺杂的动力学效应。与未掺杂的Fe-Zr氧载体相比,Cu掺杂使得原有氧载体的XRD衍射峰发生了轻微的红移,这表明Cu原子掺入引起了物质的晶格变化,2%Cu样品中