二维三温辐射热传导模型问题的两层网格方法

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:hmilymemo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二维三温辅射热传导方程组是惯性约束聚变(ICE)数值模拟研究中的一个模型方程,它近似地描述了辐射能量在静止介质中的传播,以及光子、离子和电子之间的能量交换过程。本文针对二维三温辐射热传导方程的两种简化模型的有限元方程,讨论了两层网格方法。 首先,针对二维三温辐射热传导方程组的简化线性模型,设计了两层网格方法(算法2.1)和两层网格迭代方法(算法2.2),并在有限元理论的基础上,证明了在一定条件下,两种算法的数值解与线性有限元解在H1范数下是同阶的。相关的数值实验结果,验证了两层网格方法理论结果的正确性。 其次,针对二维三温辐射热传导方程组的一种非线性模型问题,设计了两种两层网格方法(算法3.2和算法3.3),并从理论上给出了算法的误差阶估计,相关数值结果验证了这两种两层网格方法数值解的理论误差阶,与通常的单层网格法相比较,新方法在提高计算速度的同时,也能够很好地保持能量守恒性。
其他文献
非线性分析是以现实世界中各种非线性问题为背景,它是处理各种非线性微分方程的理论基石,其方法主要包括半序方法、拓扑度理论、临界点理论等.本文利用拓扑度理论和临界点理论
学位
本文围绕填充测度的定义及性质进行了较为深入的理论研究.填充测度可以在一般的度量空间上定义.在一般度量空间上,可以根据三种不同的填充形式相应的得到三种不同的填充测度.
自Buckdahn,Djehiche,Li和Peng首次引入平均场倒向随机微分方程以后,这类方程便受到广泛关注。Du,Li和Wei考虑了一维带连续系数的平均场倒向随机微分方程。学者们发现此类方程同
近几年来,由于在数论,特别是在整数矩阵的理论研究上的需要,寻找本原奇异数受到了许多数学家的关注。Hong,Shum和Sun[10]证明了Hong的一个论断:180是第一个本原奇异数(即最小的本
对于一般的无约束最优化问题及其特殊情况非线性最小二乘问题而言,信赖域方法是一种有效的方法.而信赖域半径的选取对于信赖域方法的效率有着很大的影响。黑龙在给出了一种自适
广义严格对角占优矩阵在数值代数、控制论、经济数学等众多领域中都有着重要的实用价值和意义,国内外的许多学者对其性质、判定、应用进行了大量的研究,并获得了许多重要的结论
早在1968年,Veselago提出了一种介电常数和磁导率为负数的介质概念([67]).直到2000年,在Pendry等人([55])对这种特殊介质研究工作的基础上,Shelby和Smith在微波范畴内通过将金属