论文部分内容阅读
生活垃圾焚烧过程中二噁英的生成难以避免,需通过后处理设备净化烟气,投资运行成本高昂,且捕集下来的飞灰和活性炭仍需作为危险废弃物填埋。针对二噁英的排放控制,本文结合课题组的前期研究,提出了城市生活垃圾上吸式气化-灰渣熔融-产气均相转化-清洁燃烧一体化工艺,该工艺具有以下几方面的特点:1.熔融技术能够将灰渣转化成惰性玻璃渣并为气化过程提供能量。2.上吸式气化的床层能够起到过滤气相中颗粒物的作用,从而抑制二噁英的异相合成。3.均相转化过程能够将氯代烃和“活性氯”转化成普通烃类和HCl,从而抑制二噁英的气相合成。4.相对于固体燃烧,气化产气的燃烧是均相反应过程,混合和燃尽的效果都更好。基于该工艺,本文针对气化产气燃烧过程中二噁英的生成与抑制开展研究,并兼顾NOx的排放控制,探索能够同时控制二噁英和NOx的气化产气燃烧技术。气化产气燃烧过程中,二噁英和NOx的生成与气化产气的组分有关。为了确定气化产气中的焦油组分、含氯组分和含氮组分,在本研究中利用不同配比的生活垃圾模型化合物,分别在上吸式气化-均相转化反应器和热重-质谱分析仪上开展实验研究,发现苯和酚类物质是主要的焦油组分,HCl是气化产气中最主要的含氯组分,考虑到NOx的生成与转化,最终选择苯和苯酚作为焦油模型化合物,选择HCl作为含氯组分,选择NH3作为含氮组分开展后续研究。在二噁英关键结构C-Cl键的生成过程中,“活性氯”起到了重要的作用。气化产气中的HCl在燃烧过程中能够和O2反应产生“活性氯”。为了掌握能够抑制“活性氯”生成的反应条件,本研究中利用均相管流反应器进行了实验研究,得到了不同反应温度和氧气浓度条件下HCl转化成“活性氯”的变化规律。O2能够与有机物发生氧化反应,从而与有机物的氯化反应产生竞争。为探索有机物的氧化反应对于抑制C-Cl键生成所需的反应条件,本研究中分别以苯和苯酚作为焦油模型化合物,以氯气作为“活性氯”,在均相管流反应器上开展实验研究,利用傅立叶变换红外光谱分析仪和气相色谱-质谱联用仪对产物进行检测,得到了不同反应温度和氧气浓度下C-Cl的生成规律,揭示了有机物氯化反应与氧化反应的竞争机制,提出了苯在氯气和氧气共同作用下的转化路径。苯在氯气和氧气共同作用下存在三条主要的转化路径:氯化反应、氧化反应和聚合反应。低温低氧浓度条件下,氯化反应占据主导,容易产生C-Cl键;低温高氧浓度条件下,主要发生氧化裂解反应,产生小分子氯代烃;高温低氧浓度条件下,C-Cl键受热断裂,发生聚合反应;高温高氧浓度条件下,氧化反应占据主导,有机物被氧化成CO2,C-Cl键得到了有效的抑制。根据上述研究结果,为实现气化产气燃烧过程中二噁英和NOx的协同控制,本文中提出了采用空气分级燃烧的方法,一方面利用空气分级燃烧中的欠氧燃烧区起到抑制NOx生成的作用,另一方面利用空气分级燃烧中的过氧燃烧区起到抑制二噁英生成的作用。为确定二噁英和NOx协同控制所需的反应条件,本研究中搭建了空气分级燃烧反应器,利用模拟气化产气开展实验研究,得到了不同配风方式和反应温度下NH3和焦油模型化合物对NO生成与还原的影响规律。综合上述研究结果,本文以生活垃圾模型化合物为原料,在上吸式气化-均相转化-空气分级燃烧反应器上开展实验研究,得到了配风方式、反应温度、停留时间以及均相转化等因素对二噁英生成的影响规律,验证了空气分级燃烧对气化产气燃烧过程中二噁英和NOx协同控制的效果,为工程应用提供参考。