论文部分内容阅读
温室的环境调控是改善作物环境的主要手段,温室小气候模拟模型可以定量地描述各种环境因素的变化规律及其与时间的关系,成为优化和调控温室环境的有力工具。但是国内外利用CFD仿真建模的研究中,有的学者忽略了作物对环境的影响,有的学者考虑到了作物的影响,但是都把它看成一个稳定的多孔介质的结构,存在一定的误差。因此,针对仿真模型建立对应的试验,研究在不同栽培模式、不同生物量以及不同外界条件下的番茄群体对日光温室内部热环境的影响,找出作物基础的物性参数,并利用CFD技术进行仿真模拟验证,来提高模型的精确度十分必要。主要结果如下:1.不同处理番茄群体对日光温室温度的影响大小与群体生物量成正比,与定植模式无关;白天和夜晚的差异也是与生物量成正比。各处理番茄群体区间温度与空温室温度的差值随着番茄植株生物量的增大而增大,植株量为160株,种植密度为4.44株/m~2的番茄群体在结果期对日光温室温度的影响最大,温差为2.09℃。2.高温强光的天气条件下,各处理番茄群体对日光温室温度的影响大于低温弱光天气。在外界气温一致时,晴天温差提高1.36℃;在光照强度一致时,外界气温高相比于气温低的情况下,温差增加了0.69℃。3.在实验测试的基础上,利用Solidworks软件构建等比例几何模型,采用Mesh软件对温室物理模型进行离散后导入Fluent软件下进行环境仿真,利用室内外实测数据设定仿真模型初始条件及其边界条件,并选用合适求解器对微气候模型的微分控制方程进行求解。采用CFD数值方法构建了番茄群体对日光温室影响的仿真模型,并具体分析了单行定植模式下不同生物量和不同工况下温室温度变化规律。并将实测数据与仿真数据对比分析仿真验证的结果为:空温室、80株、120株、160株的实验测得数据与仿真模拟数据总体平均相对误差分别为10.65%、9.09%、8.56%和3.56%,验证了温度预测模型的有效性,为探究不同种植工况下番茄群体对温室温度预测提供理论基础。