【摘 要】
:
随着发光二极管(LED)产业的迅速发展,白光LED的研究也越来越重要。然而,商用的白光LED荧光粉存在成本高,性能差等缺陷。开发高性能,低成本的白光LED荧光材料是当前科研人员的研究重点。碳点(CDs)作为新型的碳纳米材料,由于其优异的光致发光性能,有望取代传统荧光材料应用于白光LED。现有的研究主要集中在制备高荧光量子产率(QY),可调光致发光性能的荧光碳点。本文以含氮硅烷偶联剂作为氮源,柠檬酸
论文部分内容阅读
随着发光二极管(LED)产业的迅速发展,白光LED的研究也越来越重要。然而,商用的白光LED荧光粉存在成本高,性能差等缺陷。开发高性能,低成本的白光LED荧光材料是当前科研人员的研究重点。碳点(CDs)作为新型的碳纳米材料,由于其优异的光致发光性能,有望取代传统荧光材料应用于白光LED。现有的研究主要集中在制备高荧光量子产率(QY),可调光致发光性能的荧光碳点。本文以含氮硅烷偶联剂作为氮源,柠檬酸作为碳源,通过水热法与热解法两种方法制备了固态可调荧光碳点与硅烷改性碳点,并将其与环氧树脂结合制备出荧光树脂。探究了不同碳点的荧光性能,并将其应用于白光LED的制备。主要研究内容如下:(1)通过一锅水热反应方法,以柠檬酸、ZrOCl2·8H2O、N-[3-(二甲氧基甲基硅烷基)丙基]-1,2-乙二胺(AEAPMS)作为反应物,高温高压下制备了碳点@二氧化锆(CDs@ZrO2)纳米复合材料。CDs@ZrO2纳米材料粒径约为50 nm,粒径较为均一,其固态荧光量子产率高达23.8%。通过调控反应物中柠檬酸的配比,可以实现CDs@ZrO2纳米材料的荧光发射波长从450 nm蓝光到535 nm黄光的调节。将CDs@ZrO2纳米材料掺杂在环氧树脂中,可以实现固态荧光树脂的制备与可调荧光发射。所制备的发光LED具有显著的白光发射,色度坐标为(0.30,0.37),显色指数达到67.1。利用一锅水热法制备的可调发射的固态CDs@ZrO2纳米粒子,有望应用于白光LED领域。(2)通过高温热解方法制备了硅烷修饰碳点(Si-CD),以N-[3-(二甲氧基甲基硅烷基)丙基]-1,2-乙二胺为溶剂,加入柠檬酸高温热解后,5 min内即可制备Si-CD。该方法操作简单,反应迅速,适合工业化生产。Si-CD具有5 nm左右的尺寸大小,荧光量子产率高达53.0%。Si-CD水溶液具有双峰荧光发射的特点,低浓度时,荧光发射峰为450 nm,而在较高浓度时,荧光发射峰为535 nm。将Si-CD混合在环氧树脂中,所制备的复合材料具有高透光率(>80%)与强荧光发射,实现了不同荧光发射的环氧树脂的制备。
其他文献
TDC电路在激光雷达高精度测距、导航探测、三维成像等应用中具有举足轻重的作用。TDC的分辨率、RMS精度、非线性特性等指标直接影响激光雷达的工作性能。本文以激光雷达为应用背景,基于Xilinx公司Artix-7 FPGA设计多通道时间数字转换电路。针对机载激光雷达的不同应用背景,设计十六通道抽头延迟线型TDC和八通道双链三路型TDC。两种TDC皆采用粗细结合测量方案,抽头延迟线型TDC电路中,通过
高速芯片是车载电子系统中的重要组成部分,随着集成电路(Integrated circuit,IC)芯片工艺的发展,芯片体积越来越小,引脚数越来越多导致印制电路板(Printed circuit board,PCB)的布局布线密度变大。芯片速度越来越高,从而使得布线网络上的每根传输线都有可能成为发射天线,对其他电子设备产生电磁辐射从而相互干扰,产生电磁兼容(Electromagnetic compa
深海剖面浮标作为运载工具,可搭载传感器下潜至2000米以下水深工作。因其制造成本低、体积小、重量轻,能够长期、连续工作,被广泛应用于深远海剖面要素的观测和水下安全监视。基于北斗卫星的深海剖面浮标监测系统由深海剖面浮标、北斗卫星、岸站监控中心组成。由于深海剖面浮标地处深远海,自身设备和搭载传感器所需的能源全部由其携带的电池供应,而更换电池产生的相关费用远高于浮标生产成本,能耗是决定深海剖面浮标使用寿
可见光通信(Visible Light Communication,VLC)是通过可见光进行信号传输的,在无需其他硬件设备的情况下,同时实现照明和通信两大功能。由于无电磁辐射、超宽的使用频带以及LED照明设备普及等优势,室内VLC技术为无线通信提供一个新的解决方案。因此,对其研究具有重要的实用价值。目前,室内可见光通信系统仍存在一些不足。例如,室内传播的光信号在接收端存在码间干扰(ISI)及外界光
急性压力可能导致一系列心脏疾病,已经成为我们生活中的严重问题。压力的来源主要包括两部分,即外感受刺激和内感受刺激,分别对应急性生理压力和急性心理压力。神经学研究表明急性生理压力和心理压力在人体内沿着不同的神经传导通路,特别是心理压力反应存在一个传导延迟,这个传导延迟反映在中枢神经系统(CNS)上表现为一个评估过程,该过程允许人体基于先前的经验对压力源做出最佳响应。然而这个传导延迟反映在自主神经系统
飞秒激光具有脉冲宽度窄、峰值功率高、相干光谱宽等特点,在物理、化学、生物等领域的科学研究和精密加工等工业生产中发挥着越来越重要的作用。其中光纤飞秒激光技术是获得高平均功率飞秒激光脉冲的重要手段,成为新一代飞秒激光技术的代表之一。自相似放大为光纤飞秒激光放大独有,具有鲜明的特点,可以输出具有线性啁啾的抛物线形脉冲,去啁啾后可获得变换极限脉冲,得到高平均功率、窄脉冲宽度的高质量飞秒激光输出,具有很好的
太赫兹波因其优良的特性,在安全检查、无损探测、宽带通信、医学及天文学等领域具有广泛的应用前景。受限于太赫兹输出功率低和调控难度大,目前太赫兹波技术还未能有效发展。因此,如何提高太赫兹波的输出功率,以及有效的调制太赫兹波是目前研究工作的重点之一。本文的主要工作旨在基于波面倾斜技术实现时引入的时空啁啾以双光泵浦或狭缝选频的方式调制太赫兹波。主要内容如下:1.简单介绍了太赫兹波的特性与应用,太赫兹波的产
高阶贝塞尔高斯光束与急剧自会聚涡旋光束具有无衍射和自恢复的特性,在微观粒子操控等领域有特殊优势;携带的轨道角动量使其在光空间通信等领域被广泛研究;此外,急剧自会聚涡旋光束具有自加速特性,沿曲线轨迹保持低强度传播,接近焦点后能量加速会聚,在焦点处光强急剧上升,结合皮秒激光的非接触性、峰值功率高、热影响区小等特点可用于激光烧蚀、生物医学领域等。然而涡旋光束对像差十分敏感,其应用一定程度上受到系统像差的
锁模激光相对于调Q激光具有更短的脉冲宽度,更高的峰值功率与更宽的光谱等优点。随着半导体技术的发展,激光二极管泵浦的全固态锁模激光器在超精细加工,激光测距,生物医疗等领域有着非常广泛的应用。受激拉曼散射作为一种三阶非线性光学效应,除了可以扩展光谱范围,还能使输出的Stokes光相对于基频光具有更窄的脉宽与更高的亮度,此外受激拉曼散射本身具有的光束自清洁效应(Raman beam cleanup)还可
光学参量振荡器(OPO)是非线性频率变换领域的一个重要研究方向,通过不同泵浦源与晶体搭配可以实现不同波段的可调谐光源运转,在激光雷达、激光测距、高分辨率光谱分析、环境监测和红外对抗等众多领域具有重要应用。OPO输出性能受到泵浦源功率、光束质量等因素影响,高质量泵浦源对于高性能OPO十分重要。受激拉曼散射(SRS)具有脉宽压缩、光束自清理(cleanup)、级联特性等独特性质,不借助任何外部光束整形