基于深度学习的图像比特深度重量化与重建算法研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:hflx152
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在一些图像存储和传输资源有限的情况下,图像一般需要经过比特深度重量化来满足资源要求,随后再经过比特深度重建来生成原始比特深度的图像。其中图像比特深度重建技术旨在解决比特深度重量化给图像带来的伪轮廓和颜色失真问题,但对于重量化导致的图像结构信息丢失却没有办法重建。而现阶段的比特深度重建技术又只单一地针对低位截断这一简单的比特深度重量化方式进行图像重建,这严重地限制了最终的重建图像质量。本文主要围绕图像比特深度重量化和重建过程展开研究,基于神经网络进行算法设计。研究内容包括:(1)首先对比分析现有的图像比特深度重建算法中的神经网络模型,选择其中更适合于整个比特深度重量化和重建过程的基于残差图像的重建方法。分析了该方法中对网络输出进行截断处理方式会在图像平缓过渡区带来伪轮廓的问题,并对此提出了通过在神经网络输出层前添加有界映射层的方式来解决这种缺陷。另外改进了比特深度重建中的网络结构,其中设计了融合轮廓特征信息的残差基础网络模块,并利用U型网络结构进行网络模型搭建。最后改进了模型训练时损失函数的使用策略,先利用感知损失函数对模型进行粗训练,然后再使用一个基于像素的损失函数进行模型微调。这些改进方式对基于残差图像的比特深度重建算法性能有着良好的提升效果,最终算法模型能够达到现阶段图像比特深度重建算法的最佳性能。(2)使用神经网络构造图像比特深度重量化算法模型,这样的方式较传统量化方法保留了更多原始图像中的结构信息,减少了重量化造成的图像失真。另外还将该方法与改进后的图像比特深度重建算法结合应用于整个图像比特深度重量化和重建过程,经过实验测试这种方式不仅可以有效地去除重建图像的伪轮廓和图像颜色失真,同时也使得重建图像有着更多原始图像中的结构信息。最终的重建图像质量优于现阶段的比特深度重建算法的重建图像质量。
其他文献
图像的全景分割是图像分割领域近年来新提出的一项任务目标,其目的是对图像中每个像素进行类别预测,并对属于实例对象的像素进行实例区分。其任务综合了语义分割与实例分割的特点,是实现全面场景解析的关键一步。在自动驾驶、生物医学、智能机器人等领域有着广泛的应用前景。然而当前全景分割技术依然处于探索研究阶段,许多技术还不够成熟。现有的全景分割技术在实时性与准确率上难以达到工业水准。由于语义分割与实例分割任务在
近年来,机器人不断迅速渗透到社会生产与日常生活中,机器人感知的核心技术,同步定位与建图技术,已经成为研究重点。在许多SLAM的应用中,尤其是自主移动机器人领域,对算法的实时性提出了要求,由于SLAM算法本身的计算复杂度很高,运行在传统的CPU或嵌入式系统上速度较慢,需要高性能的CPU才能满足其要求,然而,由于尺寸和成本的限制,很难在移动机器人上部署高性能的CPU。除此之外,机器人系统还需要处理很多
随着我国信息社会的发展以及移动互联网的迅猛普及,社会中各类资讯信息与互联网的结合更加密切。借助互联网,信息可以在短时间内通过多种传播渠道分发给大量网民。以网络作为媒介,社会舆情可以更迅速、更具体地表现在网络空间中,形成网络舆情。网络舆情是新时代的产物,它的表达方式在具备自由性和互动性的同时也存在误导性和突发性。正确地利用网络舆情信息,充分地发挥其正面影响有利于形成积极健康的舆情氛围,维护社会和谐稳
随着互联网、物联网的日益普及以及各种网络技术和在线应用的提出和使用,对网络带宽的需求越来越大,未来对数字信息的需求将超过目前光通信系统的最大能力。这对作为骨干网的光纤传输技术提出巨大挑战。一方面要保证高可靠,另一方面又要保证大容量。为了平衡这两点,必须利用适合的光学性能监测(Optical Performance Monitoring,OPM)技术对光纤传输物理层参数进行监控,以实现资源的灵活调配
近年来,随着网络应用的迅猛增长,无线自组织网络中的路由协议应该增强自适应性,要既能够满足业务的传输需求,也要降低路由机制的复杂性,节省路由开销,更加高效地利用有限的网络资源。目前,传统的路由协议按路由的发现策略可以分为表驱动路由和按需路由。其中,表驱动路由因为需要网络中参与路由的节点掌握全局的网络拓扑信息,会带来较大的网络负载。而按需路由由于在数据报文传输前要进行一次寻路的操作,会带来较大的时延。
智能体是指通过对环境进行感知,并利用既有知识或者自身不断迭代的策略,与环境进行交互,完成指定任务的个体系统。而多个这样的智能体可以组成一个多智能体系统,可以解决单个智能体能力受限的问题。随着人工智能的发展,强化学习技术常应用在智能体建模上,尤其是深度强化学习可以增强智能体的感知、学习、决策能力。同时,多智能体之间的协作也会提高整体系统的能力上限,可以处理更为复杂的任务。但是,目前基于深度强化学习的
根据世界卫生组织统计,全球每年因交通事故而带来的伤亡高达上百万,由此可以看出车辆行驶安全的重要性,而智能交通系统将先进技术(人工智能、通信等)运用于交通运输系统中,可以提高系统的效率和安全性。随着近几年深度学习的发展,把深度学习技术用于智能交通系统行驶安全的相关研究越来越多,其中基于深度学习的轨迹预测就是一个很典型的例子,把轨迹预测用于轨迹异常检测和碰撞预警,对于车辆行驶安全有着重要的意义,然而,
深度学习技术在近几十年来得到高速发展,这一技术随即被应用在越来越多的领域中,自然语言处理也有诸多研究方向可以使用深度学习,文本生成就是重要方向之一。文本生成是一项基础性研究,能够在许多实际场景落地,例如提取文本摘要、文本风格转换、文本自动纠错等。生成对抗网络是深度学习中一个备受关注的框架模型,现有的文本序列模型都具有数据离散的特点,将生成对抗网络直接应用于文本生成时,就会面临训练过程中无法通过反向
辐射源个体识别对于公共安全和军事电子对抗等领域有重大意义。随着现代信息科技的不断发展和各式电子设备的不断普及,空间中的电磁环境日益复杂,复杂的电磁环境给辐射源个体识别带来特征提取困难问题,同时也引发了对未知辐射源个体进行判别的需求。为解决这些问题,本文对辐射源个体识别系统的主要模块以及未知判别方法展开研究。其中识别系统的主要模块包括数据预处理、特征提取和神经网络模型,本文对其各模块的不同方法进行了
命名实体识别是自然语言处理技术中的基础任务。作为转化非结构化文本数据的关键步骤和重要手段,命名实体识别在信息提取、问答系统、文本分类等任务中都有着重要作用。尽管命名实体识别技术发展逐渐完善,但是在进行中文命名实体识别任务时仍存在以下问题:(1)数据集获取困难,没有统一规范的处理模板;(2)预处理阶段考虑字词特征不充分,忽略上下文的语义信息;(3)无法有效识别嵌套实体。因此,如何进一步提高中文命名实