聚合物微球对泡沫体系稳定机理研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:zxh87
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国大部分油藏在气驱时存在严重的气窜现象,形成气窜通道后严重影响采收率。泡沫驱在油田上应用过程中主要存在起泡剂吸附于孔道、注入时机、注入方式和泡沫稳定性不好等问题,国内外部分研究人员发现,在泡沫液中加入稳泡剂构筑复合泡沫体系,能够增加泡沫体系稳定性。使用反相乳液聚合法合成纳米聚合物微球,并对合成工艺进行优化,最终得到合成两种粘弹性聚合物微球的最优配方,并对合成的聚合物微球进行表征测试。优选了起泡剂SDS和稳泡剂纳米聚合物微球的浓度构筑最优N2泡沫体系,并评价了聚合物微球的粒径、温度、矿化度、含油量、老化时间等因素对该优化泡沫体系性能的影响;探讨了聚合物微球的加入对泡沫溶液性质的影响,使用多重光散射和显微观察研究泡沫衰变过程中微观形貌的变化,阐述纳米聚合物微球对泡沫的稳定机理。结果表明:反相乳液聚合法合成的聚合物微球粘弹性主要由交联剂的用量决定。优选的N2泡沫体系为0.8%SDS+0.4%纳米聚合物微球,两种粘弹性聚合物微球均具备良好的稳定泡沫的能力,且在温度低于30℃的条件下,高粘性聚合物微球的稳泡能力优于高弹性聚合物微球的稳泡能力,在温度高于30℃的条件下高粘性聚合物微球的稳泡能力弱于高弹性聚合物微球的稳泡能力。泡沫体系的稳定性随着温度的升高而降低,随着矿化度的增加降低,随着含油量的增加而降低,老化时间在30天以内稳定性基本没有变化,30天后聚合物微球部分水解。两种粘弹性聚合物微球的泡沫体系泡沫衰变过程中泡沫的微观形貌及其稳定泡沫机理存在差异,高弹性聚合物微球能够增加液膜的粘弹性,阻止液膜破裂;高粘性聚合物微球能够在一定程度上增加泡沫溶液的黏度,减缓液膜排液。纳米聚合物微球稳定泡沫的机理主要有:纳米聚合物微球吸附于气液界面形成“骨架”,增加液膜的机械强度;纳米聚合物微球阻止气泡聚并;纳米聚合物微球“缓释”水减缓液膜析液,增加泡沫稳定性。粘弹性纳米聚合物微球能够提高泡沫体系的稳定性、耐温性、耐盐性和耐油性,且根据不同的油藏温度能够选择不同粘弹性的纳米聚合物微球,纳米聚合物微球的泡沫体系破裂后聚合物微球可以在地层中继续运移起到调驱的作用,具有较好的应用前景和现实意义。
其他文献
溶剂油是五大石油产品之一,应用范围广并与人们的生活息息相关,随着环境保护意识的不断增强及对能源效率的逐渐重视,降低油品中的硫氮含量以及芳烃含量具有重要的现实意义。溶剂油生产工艺大都采用两段加氢工艺,经一步脱硫、氮之后,油品中仍会含有极微量的硫化物,而第二段加氢过程中金属态催化剂就容易受到硫中毒的影响。所以提高催化剂的抗硫性能并且降低催化剂的成本至关重要。本文对Ni/γ-Al2O3催化剂进行不同方法
我国煤炭储量丰富但石油资源匮乏,利用煤/重油加氢共炼技术能有效提高煤炭和重质油的利用率,为轻质燃料油的生产提供途径,极具发展前景。但煤与重油配制的油煤浆为固液分散体系,具有热力学不稳定性,在储存、输送和预热过程中会出现黏度突变和煤粉沉积等现象,引发管路堵塞和设备损害等系列工程问题。本文以新疆(XJ)、印尼(YN)和蒙东(MD)三种褐煤为原料煤,以马瑞常压渣油(MRAR)、催化裂化油浆(FCCS)和
既有永久锚杆的数量十分庞大,且每年仍有巨大数量的锚杆应用于滨海坏境或盐碱环境中的电气化轨道交通工程。它们所处的地下工作环境恶劣,腐蚀因素众多,尤其是氯离子和杂散电流对其耐久性的影响不容忽视。再加上理论和技术水平的限制,长期对锚杆结构的锈蚀行为认识不足,对其耐久性重视不够。随着时间的推移,既有永久锚杆的耐久性问题已逐渐突出,对工程安全产生不良影响,对人们的生命、财产安全构成严重威胁。因此,本文采用理
底水油藏在我国诸多类油藏中占比很大,其储量非常丰富。除了有大量的天然底水油藏外,经过长期的注水开发,很多非底水油田的开发特征正不断地趋向于底水驱动类型的油藏。所以,认清这类油藏剩余油分布及潜力大小,能够有效指导油田开发中后期的剩余油挖潜和综合调整工作,提高最终采收率。本文在参考国内外底水油藏已经取得的剩余油成因研究成果及开发技术研究成果的基础上,以L2厚层底水油藏为研究对象,建立油藏三维地质模型,
随着国民经济的快速发展,国内市场对丙烯的需求日益增加,仅靠传统的丙烯生产技术难以满足市场对丙烯的需求,发展新型的丙烯增产技术变得越来越重要。2017年9月经国务院批准,国家发展改革委员会等15个部委联合下发了《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》,到2020年,我国将在全国范围内推广使用车用乙醇汽油,这也就意味着MTBE禁止在汽油中添加使用。MTBE在高温下裂解生产丙烯技术既
在目前我国油气田勘探开发呈现出“深、低、海、非”的新趋势下,高效破岩技术显得尤为重要。轴向冲击载荷辅助破岩的过程是在常规旋转钻井的基础上,利用冲击器产生的冲击载荷对岩石进行破碎,从而提高破岩效率。该技术是当前油气钻井提速的主要途径之一,已得到了石油行业内的广泛认可。但由于前期对冲击钻井工况模拟实验的研究仍然较少且缺乏系统性,使得目前旋转冲击钻井工具和钻井工艺仍存在不足。为完善冲击钻井实验研究,结合
随着原油重质化和劣质化,以及日益严格的环境发展要求,对FCC催化剂的性能要求变得更加苛刻。FCC催化剂需要有良好的稳定性、高的产物选择性与良好的抗钒污染能力。对于FCC催化剂而言,基质组分大约占70%(质量分数)。其主要作用在于担载催化剂活性组分,提供预裂化场所,直接影响到反应过程中的反应物的扩散与反应路径。因此,在全世界已进入了重油炼化的大趋势下,新型高效的基质材料的开发则显得十分重要。本论文采
海洋柔性立管在安装作业过程中受铺管船运动或海洋环境的影响,会受到张力、弯矩和水压等共同作用。随水深增加,抗拉铠装层屈曲失效已经成为柔性立管的主要失效破坏模式。那么,为了防止屈曲失效的发生和保证在实际安装作业过程中整体管线的力学响应在安全范围内,需要全面详细地研究柔性立管在轴对称载荷和弯曲载荷下的力学特性以及抗拉铠装层的屈曲失效机理。本文首先对柔性立管在轴对称载荷和弯曲载荷下的力学特性进行了理论说明
酚类化合物是石化、制药、香料、印染等工业领域生产废水中广泛存在的污染物;具有COD值高、排放量大、污染面广、毒性强以及难生化处理等特点,因此引起人们广泛关注。传统的水处理方法存在诸多弊端,已不能满足日益严格的环保要求,而三维电催化氧化技术能够利用·OH的强氧化作用将难降解有机物彻底矿化或转化为易生物降解的小分子化合物,因而被环保工作者寄予厚望。本文研究的主要目的是制备催化性能、稳定性能较好的粒子电
我国稠油资源十分丰富,随着常规油气资源可采储量逐渐减少,稠油作为一种极具开发价值的非常规油气资源,能够有效缓解我国的能源压力,同时能够改善我国的经济发展状况。XX断块油藏属于中深层稠油油藏,热采开发难度大,经济效益低,因此通过注水进行开发,当前水驱开发存在的主要问题是受纵向非均质性的影响,Ⅰ、ⅠⅠ类储层储量动用不均衡,ⅠⅠ类储层整体开发效果较差,同时注入水利用率低,油田含水上升速度较快。针对上述问