【摘 要】
:
减反射结构(ARSs)能显著抑制光的反射,从而增强光的吸收和透射。目前太阳能电池、光学显示器和光学检测等光学器件极速发展,其日益增长的需求亟需在加速研究具有宽谱、全向减反性能的微纳光学结构。而已有的减反射微纳结构往往多仅针对狭窄波段或固定入射角度,难以满足性能的要求。反观自然生物,多种经亿万年进化而成的生物减反微纳结构能为现今的减反射结构研究设计带来启发。目前,仿生模板合成制备法是复制生物精细微纳
论文部分内容阅读
减反射结构(ARSs)能显著抑制光的反射,从而增强光的吸收和透射。目前太阳能电池、光学显示器和光学检测等光学器件极速发展,其日益增长的需求亟需在加速研究具有宽谱、全向减反性能的微纳光学结构。而已有的减反射微纳结构往往多仅针对狭窄波段或固定入射角度,难以满足性能的要求。反观自然生物,多种经亿万年进化而成的生物减反微纳结构能为现今的减反射结构研究设计带来启发。目前,仿生模板合成制备法是复制生物精细微纳结构、重现其精细功能特性的最有效方法之一。生物减反射结构中,具有二维乳突状阵列结构的蝉翼是目前自然界中最为有效的构型模板。这一结构被发现适合制造具有纳米结构的功能性材料,该构型可在更宽波段范围内具有减反射性能。在本研究中,基于蝉翼生物模板,制备了具有ARSs的光学功能材料。然后分别研究了具有ARSs的二氧化钛(TiO2)和二氧化硅(SiO2)在不同角度下的减反射性能。同时通过制备了具有负纳米孔结构的金属半导体(Ag-TiO2),研究了蝉翼仿生构型的可见光增强吸收和光催化降解性能。主要结果如下:1.利用简捷、高效的溶胶-凝胶工艺,并结合后续煅烧工艺精确的制备了具有生物结构形态的TiO2减反射结构。制备出的蝉翼遗态TiO2不仅有效地继承了ARSs,而且展现出从法线到45°的高性能角度依赖性减反射性能。反射光谱表明,在较大的可见光波长范围内,随着入射角增大,具有ARSs的生物型TiO2的反射率由1.4%逐渐变为7.8%。2.制备所得的蝉翼遗态SiO2构型材料,具有更为广角的减反效果,在入射角(10°-60°)内表现出良好的变角减反射性能。随着入射角的增加,蝉翼遗态SiO2的反射光谱(可见光波长)的变化从0.3%仅到3.3%。3.制备具有纳米孔结构的蝉翼反向构型遗态TiO2,可直接通过蝉翼的纳米乳头阵列结构有效地制备出来,纳米孔阵列结构经高温煅烧后仍保持良好的微纳构型。Ag纳米颗粒(10nm-25nm)可均匀装饰在纳米孔结构表面和侧壁上。在紫外-可见光照射下,蝉翼遗态Ag-TiO2在降解甲基蓝(MB)中表现出显着的光催化活性。与无负载的蝉翼遗态TiO2和商业P25相比,蝉翼遗态Ag-TiO2表现出优异的光催化活性。其光催化活性可归因于纳米孔结构、Ag纳米颗粒的局域表面等离子体共振(LSPR)性质和增强的电子空穴分离。本论文研究,启迪于具有减反射特性的蝉翼表面微纳构型,研究了不同光学材料的宽谱、全向减反射性能。同时研究了基于该特性的多种功能材料,该工作为未来新型减反射光功能材料的研究提供了新的研究构型参考和数据支持。
其他文献
原子核基态性质与动力学演化的同位旋效应反映了介质中核子间有效相互作用的同位旋相关性,而介质中核子间有效相互作用的同位旋相关性在诸如放射性核束物理、宇宙中元素合成、致密星体等多个领域起到了关键作用。非对称核物质的状态方程反映了介质中核子间有效相互作用的特性,其同位旋相关部分由(高阶)对称能表征。本文中我们将原子核的基态性质以及动力学演化纳入到统一的Skyrme有效相互作用与Hartree-Fock自
原子核结构是原子核物理学的一个重要领域,主要研究原子核基态和低激发态的能谱、电磁跃迁和衰变(如α衰变、β衰变和奇异衰变)等性质。本文主要研究原子核结构两方面的问题:一方面是对原子核结构中系统规律的研究,包括对原子核质量、α衰变能和电荷半径的描述及预言;另一方面是对原子核壳模型的理论研究,包括壳模型的一个基础性问题(单轨道上的全同粒子给定总角动量的组态空间维数)和在壳模型的配对近似理论框架下研究N=
在飞行器结构动力学设计中,设计者通常选择增加结构刚度来避免气动弹性问题,但会导致结构重量增加,影响了飞行器的总体性能。主动气动弹性机翼(AAW)技术的出现为飞行器的设计带来了新的设计理念。它通过现代控制技术驱动控制面偏转,主动改变机翼表面的气动载荷分布,从而改变系统的稳定性。主动气动弹性机翼技术能够使飞行器在减小机翼结构重量、减小气动阻尼、扩大飞行包线等方面获得收益,将成为未来航空技术中的一项关键
激光等离子体的参量不稳定性是制约激光受控核聚变的瓶颈之一。从上世纪六十年代以来,多种参量不稳定机制被提出来,并被广泛研究。例如受激拉曼散射(Stimulated Raman Scattering,SRS)、受激布里渊散射(Stimulated Brillouin Scattering,SBS)和双等离子体衰变(Two-plasmon decay,TPD)等。SRS发生在四分之一临界密度以下,由于产
随着超快激光技术的飞速发展,利用飞秒以及阿秒激光脉冲与物质相互作用已经成为人类探索物质微观结构及其运动规律的重要手段。利用这些激光脉冲的超快特性,人们能够对原子分子尺度上的超快运动过程进行直接观测和操控。超短强激光脉冲与原子分子的作用进入了全新的非线性区域,实验上发现了许多新奇的物理现象,如阈上电离,非次序双电离,高次谐波的产生,以及分子的阈上解离等。对这些新奇现象的不断探索推动着强场物理的蓬勃发
NIH(National Instituents of Health)shift是酶催化苯环上羟基化反应时引起的一种基团分子内迁移的现象,该现象在哺乳动物的疾病、药物代谢、抗生素合成以及芳香化合物的降解中均有发现。可以发生NIH shift的基团包括氢原子、卤素、乙酸、烷基以及羧基等。其中,氢原子和乙酸基团的迁移是由单个加氧酶催化完成,并有相关基因和酶学的报道,但其它基团包括羧基等的机理尚未阐明。
自上世纪三十年代被提出以来,暗物质的存在已经被许多天文学观测和宇宙学研究所证实。在目前的宇宙学标准模型中,暗物质约占整个宇宙组成的26%,然而人们对于它的本性仍然知之甚少。在众多来自理论模型的候选者中,弱相互作用大质量粒子(WIMP,Weakly Interacting Massive Particle)被认为是最可能的暗物质粒子,因其从早期宇宙热平衡中退耦出来之后的残余密度恰好与现在的暗物质丰度
生理性的DNA磷硫酰化修饰(DNA phosphorothioations,PT)是指细菌DNA磷酸骨架上的一个非桥接氧原子被硫原子所取代,具有修饰频率低,立体选择性等特征。本研究主要针对磷硫酰化DNA的抗氧化功能和结构特性进行研究。这种“原位”DNA化学修饰赋予了硫修饰阳性细菌直接清除氧化剂的能力,从而增强了生物抗逆性的生物学功能。但是,在机制方面上仍有若干问题尚未解决:1,磷硫酰化修饰在细菌体
足够多的天文学和宇宙学观测证据表明,我们的宇宙充盈着不发光的暗物质,而为了从粒子物理的角度解释其起源和属性,对超出标准模型新物理的研究成为当前的重要课题,而其中暗物质候选者的性质也各不相同。令人感兴趣的是,如果我们从对暗物质粒子的建模本身出发,以尽可能最小的成本去寻求标准模型的扩展,那么这些模型便有望被系统化地归纳到一类最小暗物质模型的框架中,它通过增添额外的SU(2)L单态或多重态来扩充标准模型
立柱波浪爬升是大型海洋结构物设计、运营中面临的一个重要问题。半潜式平台、TLP平台和Spar平台等立柱尺度较大的海洋平台在与波浪相互作用时具有较为显著的非线性特征,除波浪绕射、辐射效应叠加引起的立柱周围波面升高外,还经常出现波浪沿立柱表面形成射流,从而增加下甲板砰击甚至甲板上浪的风险,威胁到海洋平台的安全。近年来,恶劣海况下严重的波浪爬升导致的设备损坏甚至安全事故屡有发生,引起了工业界和学术界对立