边坡应力分析的解析方法及稳定性分析

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:smtl520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文将边坡视为平面应变问题,假设坡体是只受到重力作用的均质弹性体,根据复变函数方法推导获得了边坡的应力解析解。当坡体滑动时,在滑面处满足Mohr-Coulomb强度准则。以应力解析解为基础,根据极限平衡原理定义边坡的稳定安全系数,通过最优化方法寻找最危险滑动面,提出一种不需要将坡体分条的稳定分析方法。其主要研究内容和获得的成果如下:(1)使用保角变换将带有边坡的半无限域映射为ζ平面上的单位圆,以通过Schwarz-Christoffel变换得到的精确映射函数为基础,使用级数逼近方法获得了便于应力求解,同时具高精度的映射函数显式表达式。基于考虑体力的复势函数方程,推导出适用于本问题的应力边界条件,将待求的解析函数表示为幂级数,根据应力边界条件,直接建立求解解析函数系数的线性方程组,实现复势函数的求解以及应力的计算。(2)将得到的边坡应力解析解与通过ANSYS计算的数值解进行比较,验证本文解析解推导和求解的正确性,并依据解析解分析了泊松比和坡角对应力的影响。计算结果表明:边坡在仅受重力作用时,泊松比越小沿边坡坡面的切向压应力越大,坡脚的应力集中越明显;在坡顶面附近,坡体内的应力值较小,并且变化平缓。坡角对应力分布有很大影响,边坡角度较小时,坡面段的应力变化较为平缓,坡脚处的应力集中不明显,当边坡角度较大时,在坡脚附近存在明显的应力集中现象,并且随着边坡角度的增加,坡脚处的应力集中程度急剧增加。(3)将滑动面用分段二次多项式函数表示,当分段间隔足够小时,这种表示方式可以描述任意曲面形状。根据应力解析解求出曲面上每点的滑动力和抗滑力,并计算边坡稳定安全系数。以稳定安全系数为目标函数,多项式系数为设计变量构成优化模型,通过混和罚函数优化方法求出使稳定安全系数达到最小的多项式系数,其对应的曲面即为最危险滑动面。(4)在不同材料组合下,将本文方法所得到的边坡稳定安全系数与一些经典分析方法进行了对比,并依据本文方法分析了泊松比对边坡稳定性的影响。结果表明:本文方法所得到的边坡稳定安全系数与简化的Bishop法和有限元强度折减法的结果非常接近,且基本介于简化Bishop法和有限元法之间。得到的滑动面是向上凹的光滑曲线,可以很好地解释坡顶所出现的陡峭裂缝。通过算例分析发现坡体的泊松比越大,边坡的稳定安全系数越大,但随泊松比变化的影响不明显,而在其他参数相同时,边坡高度对稳定安全系数有较大影响,随着坡高的增加,稳定安全系数迅速减小。
其他文献
随着太阳能、风能的新能源的快速发展,新能源并网对电网的调峰调频提出了更高的要求,而储能是能源结构转型的重要支撑,飞轮储能具有响应快、瞬时功率高、维护成本低等特点,在电网中具有非常好的发展前景。本文介绍了飞轮储能的原理及飞轮储能系统的各部分结构,针对各部分的作用和研究现状进行了分析;发现飞轮储能系统中的发热部位主要位于机械轴承和飞轮转子,主要是因真空室内无空气进行有效对流换热,存在散热问题。本文通过
快堆可将核能改造成大规模、可持续且环境友好的资源,是未来先进核能的发展趋势,钠冷快堆由于技术相对成熟,是其中最有希望的堆型。钠冷快堆经济性与安全性评估涉及到不确定度的量化。在反应堆物理计算中,计算机功能的逐渐强大使得建立数学-物理模型和数值离散方法上的近似逐渐减少,核数据引入的不确定性进而成为堆芯物理参数不确定性的最主要来源。故针对钠冷快堆核数据的敏感性和不确定性分析具有重要的研究价值,本文工作据
为解决能源短缺与环境污染问题,提高能源利用效率,建设发展区域综合能源系统(Regional Integrated energy system,RIES)势在必行。区域综合能源系统由能源站、供能网络和用户组成,通过能源站实现多种能源相互耦合与转换,通过供能网络互联实现能源站间协调互补,满足用户各种能源需求,具有良好的经济效益与环境效益。本文以RIES为研究对象,构建了区域综合能源站-网系统基本架构与
汽轮机故障诊断是一项多学科交叉、多技术融合的复杂系统工程,具有运行工况多变、参数间相互耦合、故障传递与演化规律复杂等特点。本文在对汽轮机典型故障模式深入分析的基础上,结合知识工程和深度学习等相关理论与技术,开展了汽轮机智能故障诊断关键技术研究。首先,针对汽轮机故障间关联关系复杂的问题,提出了故障知识分析与获取方法。基于系统工程理论,对汽轮机设备进行层次性划分;采用故障树分析法和故障模式及影响分析法
在过去的几十年里,随着微纳尺度加工技术的进步,微型电子设备吸引了研究人员的广泛关注。然而,散热一直都是阻碍热沉性能进一步提高所面临的主要问题。因此,许多研究者们投入强化对流换热的研究中,以此提高微通道热沉性能。为了改善流体流动和换热,人们设计了各种形式的微通道结构,通过不同方面和不同角度,对双层微通道,带有固体鳍片的微通道,带有多孔鳍片的微通道,带有波浪形鳍片或多孔鳍片的微通道进行了设计研究。本文
在自清洁、强化传热、喷雾冷却、微流控、防结冰等工业领域中,液滴撞击固体表面是较为常见的物理过程,该过程受到撞击条件、表面润湿性以及周围环境等因素的影响。在低温环境中液滴撞击固体表面时很容易发生结冰,结冰现象是能源动力、交通运输、电力通讯、航空航天等防结冰领域正在面临的严峻问题。自荷叶效应发现以来,超疏水表面因其强烈的拒水性而备受关注,能否利用超疏水表面抑制撞击液滴结冰是近年来的研究热点。但针对超疏
蒸汽冷凝广泛应用于工业生产和生活中,通常情况下,超疏水表面具有较高的冷凝传热系数,但也有研究指出,纯蒸汽环境下,如热管或高效工业冷凝器中,部分超疏水表面会出液滴“钉扎”现象,液滴脱落难度较大,对冷凝传热产生不利影响。于是,为了提高纯蒸汽环境下超疏水表面液滴脱离频率,基于协同排液思想,设计并制作了双层组合表面,实现了冷凝表面的集液和排液功能,强化了冷凝传热性能,对提高工业生产的经济性和安全性具有重要
高温热管在高超声速飞行器热防护、空间核反应堆冷却、太阳能利用等方面具有广阔的应用前景。热管内部高温碱性液体金属流体流动和相变特性的精细调控手段的匮乏是制约高温热管技术发展的瓶颈。本文以高温热管内的液态金属流动-相变为研究对象,从高温热管内部液态金属关键动态湿润物性参数测量、微观模拟及构建流动相变和微结构的构效关系等角度,研究和解决高温热管性能瓶颈和无法精细化设计的局限。本文通过实验和仿真等手段研究
溴化锶(SrBr2·6H2O)是一种很有前景的用于空间采暖的热化学储能的盐水合物。然而,由于这种盐的形态不稳定,有必要将其作为吸附剂加入多孔基质中开发出一种新型热化学储能复合材料,其次,由于SrBr2·6H2O没有精确的动力学模型,不能很好地指导反应器内吸脱附反应和放热速率的控制。本文制备了SrBr2/膨胀蛭石(EVM)复合材料,并对其结构及吸附/脱附性能进行了研究,建立了 SrBr2·6H2O的
在分布式能源系统中引入冷热量存储技术,可以很大程度上避免由于用户冷热电负荷的波动性和不同步性造成的供需不匹配问题,并能有效提高能源综合利用水平。因此,本文以分布式能源系统为基础研究对象,引入梯级相变装置,分析梯级相变分布式能源系统的运行特性。首先,对梯级相变分布式能源系统进行初步设计,确定各子系统选用设备类型,并建立系统部分部件的数学模型。其次,针对系统重要设备双效溴化锂吸收式制冷机组和梯级相变蓄