论文部分内容阅读
随着科技的不断进步,在科学研究和工程实践中遇到的问题变得越来越复杂,采用传统的计算方法来解决这些问题面临着计算复杂度高、计算时间长等问题。而近期广泛研究的群体智能算法,由于不需要具体的数学模型和对所求解的问题不设定特别的假设,为求解此类问题开辟了新的研究思路。人工蜂群算法是2007年土耳其学者Karaboga提出的一类模仿蜜蜂群体的智能行为产生的算法,并且在同期出现的各种蜂群智能算法中,是应用最广泛、研究得最多的算法,现已成为群体智能研究领域中的新兴研究分支之一。但截至到目前,人工蜂群算法的体系研究还不够成熟,存在算法结构简单、操作算子形式单一等问题。另外,对其现有的研究大都是针对相关领域的单目标优化问题,对多目标问题的研究才刚刚起步,并且存在求解策略简单、解的质量不高、收敛速度慢等问题。因此,研究如何改进人工蜂群算法,尤其是根据不同的优化问题采用比较成熟的求解策略和操作算子来提高人工蜂群算法的性能,具有重要的理论意义和潜在的应用价值。本文在对现有的改进人工蜂群算法进行充分研究和深入探索后,针对具体的优化问题和算法中存在的不足,研究了几种算法混合策略,设计了几种改进的人工蜂群算法,并且用典型的测试函数进行大量的数值比较实验。论文的主要研究成果包括以下内容:1、针对原算法的开采能力不足,尤其是在接近最优解时,算法的搜索能力变弱,收敛速度变慢的问题,研究了混沌映射用于改进人工蜂群算法的局部搜索性能。其中,Logistic混沌映射是一个非常简单的经典模型,在很多算法的改进中所使用,但它对初值设置的依赖性强,并且在0和1两点附近的分布要多于其它区域。Tent映射产生的混沌序列更具有全局遍历性,且分布较Logistic映射更均匀,但由于存在不稳定的周期点和不动点,在某些取值上分布较差。针对这些缺陷,本文对Tent映射进行了改进,并对二维混沌映射模型Hennnon映射进行了研究,利用其具有映射空间大,动力学特性复杂且简单易于实现的特点,改进算法搜索范围。2、本文研究了两种基于混沌搜索的人工蜂群算法用于求解单目标无约束优化问题,分别是基于改进的Tent映射的GTENTABC和基于Hennon映射的HENABC。在7种测试函数的实验中,把以上两种算法和常用的Logistic混沌搜索、Tent混沌搜索,以及基本的人工蜂群算法进行比较,可得GTENTABC算法不管是在单峰还是多峰问题上,都能在收敛速度和求解精度上获得比基本的ABC算法及其他混沌搜索算法较好的结果,并且随着维数的增加,也能保持较好的有效性和鲁棒性。说明GTENTABC算法不仅具有全局寻优能力,而且具有较强的局部搜索能力。其次,采用二维混沌映射模型的HENABC算法在多模态高维测试中获得了良好的结果,可以得出HENABC算法能扩大算法搜索空间,比较适合于求解复杂的高维问题的结论。3、针对人工蜂群算法求解约束优化问题性能较差的缺点,受文化基因算法启发,在前面GTENTABC算法的基础上,提出了一种基于可行规则的文化基因人工蜂群算法(MGT_ABC)来求解约束优化问题。算法中采用差分搜索算法作为文化基因框架里的演化算法进行全局搜索,并采用可行规则来处理算法中的约束项,在算法的开始阶段选取一定比例的蜂群个体按照差分进化算法搜索蜜源位置,以提高种群的多样性,随后按照一定的概率模型进行动态分配跟随蜂进行邻域开采,将较多的计算资源动态分配给当前表现较好的更新策略,以适应约束优化问题的特性。通过包括难约束Bump问题在内的9个约束优化问题进行实验,并与其他文献中的算法进行了比较,验证了MGT_ABC算法的有效性。4、针对多目标人工蜂群算法的求解局限,提出基于分解的多目标人工蜂群算法MOABCD。采用分解的思想,将传统的数学规划方法与人工蜂群算法相结合,把多目标优化问题转化为单目标子问题集来求解,采用对称拉丁采样来生成尽可能均匀的权重因子,使得各个优化目标的分布多样性较好,并基于惩罚函数的边界交集法来分解优化的多个目标,能有效的避免陷入局部最优。用19个测试函数对包括本算法在内的10种算法进行数值比较实验,验证MOABCD算法的有效性。