广义Burgers-Huxley方程的精确解

来源 :江苏大学 | 被引量 : 0次 | 上传用户:zuoshuqiong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要围绕广义Burger—Huxley方程的精确解进行了深入的研究与探讨,通过几种方法得到了该方程及其特殊形式的若干新解。主要工作包括以下几方面内容: 首先,介绍了研究工作的历史、现状、未来和本文的主要工作。 其次,介绍了与本文相关的一些基本概念、符号,给出了孤立子的定义和发生机理,探讨了孤立波和孤立子的异同,对目前所知道的孤立子按空间维数的高低进行了分类,同时对易于混淆的精确解、近似解和相似解做了必要的说明。 再次,介绍了几种求解非线性方程的方法,如计算机代数解法、齐次平衡法、Backlund变换和Auto—Backlund变换、改进的tanh—coth法等。 最后,应用上面介绍的几种求解非线性方程的方法研究广义Burger—Huxley方程及其特殊形式方程的精确解,得到了许多有意义的新解。
其他文献
本文研究一类与DY方法有关的共轭梯度法的收敛性问题,主要由四部分组成: 第一部分,简要回顾了非线性共轭梯度法的产生、发展和特点,介绍了共轭梯度法的一般形式、常用的共轭梯
本课题将在现有的不确定模糊多属性决策理论与方法的研究基础上,基于模糊集理论,重点研究以下两个方面的问题:1.鉴于在不确定多属性决策中,权重的确定既要考虑到专家的重要性和决
子群H称为群G的共轭置换子群,若对于G的任意子群K,H和K共轭置换,即存在x∈G,使得HKx=KxH。若H和G的任意极大子群都共轭置换,则称H为G的PCM—子群(或H在G具有PCM—性质)。若H和G的
以往在构造分形插值曲面时,不是在边界插值点共线就是在局部区域边界插值点共线的条件下研究,或者要求纵向尺度因子相等或者尺度因子是一个复杂的函数,这使得研究有一定的局限
瑞利波法是一种新兴的地球物理勘探方法。它主要用到了层状介质中瑞利波的频散特性,涉及到瑞利波数据的采集、频散曲线的正演理论及反演解释三个问题。由于目前瑞利波法的数
可持续发展是当前经济、环境、社会等学科在内的最重要的前沿领域之一.要实现我国乃至整个人类社会的可持续发展,就必须以区域可持续发展为基础.区域可持续发展是现阶段可持续
基因芯片是基因研究必不可少的工具,通过分析基因芯片数据可以获得有关生物学的大量宝贵信息。聚类分析是基因数据分析中的一种重要手段,本文主要内容包括基于划分的聚类算法的
单峰型问题是组合学中基本的研究课题之一,其内容包括单峰性、对数凹性、对数凸性和PF性质的研究等.因PF性质蕴涵单峰性和对数凹性,且有限PF序列可由其发生函数只具有实零点来