论文部分内容阅读
镍属于过渡金属Ⅷ族元素,其化合物在有机合成、工业催化等方面被广泛应用。三价膦化合物作为一种强支持配体与过渡金属能形成稳定的配合物,广泛存在于金属有机化合物中。三甲基膦支持的金属镍配合物具有良好的反应活性和选择性。1.三甲基膦支持的富电性镍(0)和钴(0)配合物在C-Cl键活化中的应用芳基氯化物是有机合成中的重要中间体,并且在工业、农业、制革、医药等行业具有广泛的应用,由于其廉价易得,取代较为昂贵的芳基溴化物、碘化物作为合成原料也就具有明显的经济价值。但由于含氯有机物具有长期残留性,生物蓄积性以及强致癌性,含氯有机物对环境的污染己经引起了各国政府、学术界和公众的广泛关注,成为一个全球性环境问题。因此,掌握新的C-Cl键活化手段,寻求新的氯化、脱氯化合物,对于解决日益严重的环境问题,具有积极的作用。本课题利用Ni(PMe3)4与苯甲醛亚胺类化合物(1-4,11-13,17,18)反应,通过环金属化,得到一系列含有五元螯合环的二价镍配合物(5-8,14-16,19,20)。利用Ni(PMe3)4与2,6-二氯苯甲醛亚胺类化合物(1-4,11-13)的反应,原位充入1个大气压的CO气体,通过羰基化和环金属化寻找到了一种更为有效的制备双异吲哚啉酮化合物(21-24,33-35)的方法,并推测了该反应的可能机理。为了优化制备双异吲哚啉酮化合物的反应路线,提高其制备反应的速率和产率,我们尝试了Ni(PMe3)2(COD)与2,6-二氯苯甲醛亚胺类化合物(1-4)反应,然后与CO的反应,同样得到双异吲哚啉酮化合物(21-24),与Ni(PMe3)4相比,其反应的产率和速率明显提高。另外,我们还尝试了Co(PMe3)4与2,6-二氯苯甲醛亚胺类化合物3的反应,然后与CO的反应,同样得到双异吲哚啉酮化合物23。2.三甲基膦支持的低价态镍配合物在C-F键活化中的应用C-F键活化的研究具有很大的意义和应用价值。掌握活化C-F键的新手段不仅有助于我们研究合成新的多功能性氟代有机物,而且有助于解决日益严重的含氟化合物对环境的污染问题。本课题利用三甲基膦支持的零价镍配合物Ni(PMe3)2(COD),成功实现了含锚定基团的苯甲醛亚胺中C-F键的活化,并且得到多核镍的簇合物37。在功能化反应中,初步探讨了氟代苯甲醛亚胺与Ni(PMe3)2(COD)反应,然后与CO的反应,试图寻找一种制备氟代羰基化合物的新途径。利用Ni(PMe3)2(COD)与全氟吡啶的反应,成功地实现了不含锚定基团的化合物中C-F键活化。在Ni(PMe3)2(COD)与全氟萘的反应中,虽然没有实现全氟萘中C-F键的活化,但我们已经分离出π配位的中间体化合物46和47。改变反应的温度、溶剂和压力或许会成功实现C-F键的活化。3.三甲基膦支持的低价态镍配合物在C-CN键活化中的应用碳-碳键的活化与断裂在石油化工、材料工业、有机合成等领域具有重要的研究意义和应用价值。目前,此类反应大多数需要在长时间加热甚至加压的条件下进行,并且伴随有副反应和环境污染。研究在较温和条件下碳.碳键活化,是一个十分有意义的课题。本课题利用零价镍配合物Ni(PMe3)4和Ni(PMe3)2(COD)分别与取代苯甲腈的反应,在较温和的条件下实现了C-CN键的活化,并初步探讨了腈基镍配合物与溴苯和CO等的反应性能。4.三甲基膦支持的含硫有机镍配合物的合成及性质研究金属硫配合物是生物电子转移调节剂,它存在于基本催化过程(如催化脱硫)和生物过程(如Fe-S蛋白质)。本课题利用NiMe2(PMe3)3分别与两分子当量的苯硫酚,邻甲基苯硫酚和对甲氧基苯硫酚反应得化合物54,55和56,推测并验证了反应机理,低温下成功分离得到其中间体化合物57。并初步探讨了金属硫配合物与CO、苯乙炔等的反应性能。NiMe2(PMe3)3与硫代水杨醛以及甲基取代硫代水杨醛分别反应得到新的金属有机二价镍的化合物61和62。并初步探讨了化合物61和62分别和碘甲烷的反应性能。新化合物采用IR,1H NMR,13C NMR,31P NMR等手段进行表征,获得单晶的化合物进一步用单晶结构证实。