非交换Lorentz型空间的研究

来源 :新疆大学 | 被引量 : 0次 | 上传用户:zhuzi1976
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考虑了与一个半有限von Neumann代数对应的非交换Lorentz型空间,包含四部分内容.第一部分介绍了文章的研究背景,非交换积分理论的基础知识以及本文的主要结果.第二部分研究了非交换弱Lp空间,给出了非交换弱Lp空间对偶空间的具体形式.在这一部分中还讨论了非交换弱Lp空间上的紧左(右)乘算子.第三部分研究了非交换加权Lorentz空间的对偶空间,得到了类似于经典的加权Lorentz空间对偶空间的结论.另外在这一部分中还讨论了非交换Hardy-Lorentz空间,给出了非交换Hardy-Lorentz空间上有关Riesz分解,Riesz投影和Herglotz变换的一些结论.第四部分研究了非交换加权Orlicz-Lorentz空间和非交换加权弱Orlicz-Lorentz空间,给出了非交换加权(弱)Orlicz-Lorentz空间的基本性质,并给出了一类非交换加权Orlicz-Lorentz空间的对偶空间.另外我们在这一章中还讨论了非交换加权Orlicz-Lorentz空间上拟线性算子的插值.在这一章的最后我们还讨论了非交换Calderon-Lozanovskii空间Eφ(M)的广义伴随空间M(Eφ1,(M),Eφ(M)).
其他文献
改革开放40年来,中国经济取得了持续的高速增长,国内生产总值由1978年的3679亿元增长到2018年的91.93万亿元,年均实际增速达到9.5%,远高于同期世界经济增速。然而,长期以来,中国经济呈现出粗放型增长方式的特点,由此也引发了污染加剧、雾霾加重等一系列环境问题,使得经济增长变得不可持续。特别是2010年以来,中国经济增速下滑的压力一直比较大,经济“脱实向虚”、产能过剩等问题互相交织,使得
分数阶偏微分方程是指未知变量中含有分数幂的方程,它比传统的整数阶方程更适合于描述具有各种材料的记忆性和遗传性的现实问题,例如,电解化学、凝聚态物理、半导体物理、湍流和粘弹性系统、生物数学和统计力学、光学和热系统、材料和信号处理等领域.分数阶对流扩散问题作为在科学和工程计算模拟中应用最广泛的问题,许多实际的流体流动过程,如传热、流体力学、地下水污染输运扩散过程和油藏、质量和能量传输以及全球天气模拟等
复杂背景条件下的红外弱小目标的检测具有非常重大的理论意义和实际应用价值,尤其是在军事领域,常用于红外侦察、制导及预警等方面。由于红外弱小目标所特有的面积小、亮度低、与周围背景之间的对比度弱等特点,在原始红外图像中,复杂背景下的高亮背景、背景边缘和噪声等很容易淹没真实红外弱小目标,导致目前针对复杂背景条件下的红外弱小目标检测算法存在检测率低、虚警率高等问题。当前,基于人类视觉系统Human Visu
辐射扩散方程的数值模拟对于受控约束核聚变、等离子体物理、天体物理等各类实际的工程和物理问题的研究具有重要意义.由于工程上对于这类可压的辐射流体力学问题界面的分辨精度要求很高,通常采用拉格朗日法进行模拟.数值模拟的网格可能随着流体的运动而扭曲变形,能量扩散的模拟就需要在扭曲的网格上进行.本文以扭曲网格上的辐射扩散方程的保正和保极值有限体积格式为研究对象,主要做了以下的工作:首先,我们构造三维扩散方程
复杂网络是指具有自组织、自相似、吸引子、小世界、无标度中部分或全部性质的网络,因其能够帮助人们更好的理解和研究事物的本质,近年来吸引了国内外众多学者的关注.神经网络作为复杂网络的代表,已经被成功地应用于模式识别、智能控制和组合优化等领域.对由多个神经网络所构成的耦合神经网络进行同步分析和控制,是当前复杂网络动力学研究的热点问题之一.本文结合复杂网络理论、现代控制理论和Lyapunov稳定性理论,研
随着多处理器计算机系统的大规模网络在许多领域的普及,许多理论问题引起人们广泛的关注,其中之一就是网络容错的问题。网络的容错性是指网络在发生故障时保持连通或保持某些性质的能力。网络拓扑结构经常以(有向)图,甚至以超图为模型,因此可以使用(有向)图或超图的某些容错参数来评估网络的性能。由于对称网络具有许多理想的性质,对称图的容错性也是一个重要的研究方向。本文主要研究关于边连通性的(有向)图或超图的一些
代数图论是通过运用线性代数、群论、组合设计等知识来分析图的代数性质,从而刻画图的组合结构的一门学科,它是图论研究的一个重要分支.作为代数图论的一个重要研究方向,图谱理论主要研究与图相关的矩阵的特征多项式、特征值、特征子空间等相关的代数参数性质,以及它们与图结构属性之间的关系.高度对称图是指具有较强对称性的图,从代数上看就是具有较大自同构群的图,它们往往具有良好的代数组合性质,是连接图论、组合设计和
连通性和Hamilton性是图论中的两个经典的研究课题.连通性与互联网络的容错性存在着非常紧密的联系.Hamilton性是网络设计时最基本的要求之一.生成连通性是图的连通性和Hamilton性的融合与推广.本文主要研究图的结构连通性,结构容错Hamilton性以及生成连通性.第一章,阐述本文的研究背景,现状与进展,相关概念以及网络模型.第二章,主要研究几类著名网络的结构连通性和子结构连通性.第一节
代数图论是图论学科的重要研究领域之一,主要运用代数方法来解决图论问题.代数图论有三个主要分支,分别为图与线性代数,图与群论,图不变量.其中图与线性代数的研究核心是图的谱理论.图谱理论是通过研究与图相关的矩阵(邻接矩阵,拉普拉斯矩阵,无符号拉普拉斯矩阵,正规拉普拉斯矩阵和距离矩阵等)的谱的性质来研究图的组合性质.图谱理论研究兴起于20世纪50-60年代,近20-30年来得到迅猛的发展,它是图论,组合
Grobner 基理论是由 Buchberger,Shirshov 和 Bergman 独立引进的.Buchberger 创建的交换代数的Grobner基理论为解决交换代数中的约化问题提供了非常有效的方法.Bergman把Buchberger的理论推广到结合代数上.在李代数上的类似理论由Shirshov创建.后来,Bokut证明了 Buchberger和Bergman的Grobner基理论其实是S