论文部分内容阅读
电池的能量密度制约着新能源汽车的续航里程,而提升电解液的工作电压是改善锂离子电池的能量密度的有效途径之一。普通电解液的最高限制电压为4.35 V,当电压高于4.5V后电解质会变得极不稳定,与充电状态下高氧化态的正极发生反应,导致大量可燃气体生成,并且与电极间的副反应也加速了电池循环性能衰减和安全性的降低。因此研究高电压稳定性好的电解液可促进新能源汽车的发展,具有重要的应用价值,论文取得的研究成果如下:(1)采用 1.0 mol/L LiPF6+ 0.1 mol/L LiDFOB-FEC/PC/DMC 的电解液体系,其电化学窗口达到5.5V(vs.Li/Li+)以上,并对铝箔有良好的钝化作用。LiNi0.5Mn1.5O4在该电解液中的放电比容量可达128.7 mAh/g,库伦效率大于99%。200次充放电循环后,比容量仍达108.2 mAh/g,容量保持率达到85.3%。CV和SEM分析结果表明电解液与LiNi0.5Mn1.5O4具有较好的相容性和脱嵌锂可逆性,在正极表面生成了保护膜,阻止了电解质的继续分解。(2)研究了不同负极材料Li4Ti5O12、硅碳和石墨等在高压电解液中的相容性和循环性能。研究结果表明,不同负极在该电解液中均具有良好的循环特性。在1C倍率下,钛酸锂放电比容量达157.2 mAh/g以上;室温时520次循环后,容量保持率约为74%,库伦效率超过99.5%,但其高温性能和大倍率性能较差;CV测试中,氧化峰与还原峰形成中心对称的封闭曲线,电极脱嵌锂可逆性较好。硅碳在上述高压电解液中以0.33 mAh/cm2测试,首次比容量可达707 mAh/g;经过100次充放电循环后,比容量降至550 mAh/g。传统石墨电极在电解液中的比容量、库伦效率和循环性均较好,在0.33 mAh/cm2的电流密度下,100次充放电循环后,放电比容量仍达323.3mAh/g,放电比容量未见衰减。