论文部分内容阅读
铁电薄膜由于具有优良的介电性、压电性、铁电性,在存储器、传感器、微机械系统等电子器件中有广阔的应用前景。钛酸铅和钛酸钡都是典型的钙钛矿型铁电材料,而且通过磁性元素的替代,或者同其他磁性材料进行复合,可以得到性能良好的多铁性薄膜,从而更加拓宽了其发展方向。本文以钛酸铅和钛酸钡为基体,通过元素替代、应力调控等手段,得到了性能优异的铁电和多铁性薄膜,研究了化学替代和应力调控对钛酸铅基和钛酸钡基铁电及多铁性薄膜的晶体结构、电子结构、铁电性、铁磁性以及磁电耦合等之间的关联。通过化学替代的方法制备了钛酸铅基的多铁性薄膜。采用溶胶凝胶法制备了 10%固溶度的(1-x)PbTiO3-xSmFeO3体系,得到了铁电性优异、并具有明显磁性的多铁性薄膜。通过同步辐射XAS和XPS可以观察到Fe大部分以Fe3+形式存在,而且氧空位含量低,使得薄膜的漏电流小,表现出优异的铁电性。并且通过氧化物底电极LaNiO3来改善了薄膜的疲劳失效。通过结合变温的压电力显微镜和变温的电滞回线、变温XRD等,研究了0.9PbTiO3-0.1NdFeO3薄膜中的缺陷偶极子在不同温度下的变化。通过变温电滞回线证明了在150℃时,缺陷偶极子的热运动速率可以和自发极化的翻转速率相匹配,导致薄膜漏电流升高。变温XRD和Raman证明了在该温度区间缺陷偶极子对薄膜取向与晶格振动并没有产生影响,说明缺陷偶极子的重取向并不具有长程有序性。通过PFM观察到了0.9PbTiO3-0.1NdFe03薄膜中的缺陷偶极子在150℃会产生从面内到面外的重取向,进而使自发极化发生取向变化。该结果为实现无外电场下的自发极化翻转提供了新思路。通过相界面应力的引入,制备了大极化值的BaTiO3复合外延薄膜,剩余极化值(100 μC/cm2)大为增加,居里温度也从块体的130℃提升到了大于1000℃。并通过扫描透射电镜观察到了匹配的BaTiO3和BaO单胞,证明了“相界面”的存在。并且观察到了在界面处BaTiO3中Ti离子位移增大的现象,为自发极化的增强提供了有力解释。并通过X射线吸收谱佐证了 Ti离子位移增强、Ti-O杂化的保持对自发极化的贡献。借助相界面应力,制备了 BaTiO3:CoFe2O4复合多铁性薄膜。通过X射线衍射和RSM观察到了相界面应力作用下完全匹配的面外单胞参数,而面内方向的相界面应力较小,应力弛豫比较明显。匹配的面外单胞参数改善了以前单胞参数不完全匹配导致的较弱的磁电耦合性能,通过MFM观察到了明显的逆磁电耦合效应。同时,相界面应力的引入导致了 CoFe2O4中Co和Fe占位的改变,从而改变了磁结构,将相界面应力的应用扩展到磁性、多铁性材料中。