论文部分内容阅读
随着社会与经济的不断发展,电能成为制约社会与经济可持续发展的瓶颈因素之一。水电作为清洁能源,已成为我国能源结构中非常重要的组成部分,而且变得越来越重要。为了提高水能资源利用率,提高水库发电的调度水平是重要途径之一。近年来,随着气象预报技术及计算机技术的不断发展,利用数值降雨预报信息来延长径流预报的预见期和提高预报精度成为可能性。如何根据现有的预报信息提高水库发电调度水平是现阶段亟待解决的问题。为此,本文选择浑江梯级水库群为例,采用美国全球预报系统(GFS)发布的降雨预报信息作为资料开展考虑预报信息的水库群发电调度研究。首先,基于GFS数值降雨预报信息对浑江梯级水库群的径流进行预报,以此研究结果作为本文研究的信息输入。然后在此基础上,围绕耦合预报信息的水库发电调度模型展开了研究,分别从隐随机、显随机和模拟-优化的角度作为研究的切入点,并分别建立考虑预报信息的调度模型。最后,基于预报和调度两方面的研究成果,建立浑江梯级水库群发电预报调度系统作为系统的输出。本文研究成果主要有以下几个方面:(1)由于水文预报模型的结构、参数和初始值等误差均会对预报结果产生影响,因此,采用多个不同类型的水文模型对中期径流进行预报,并以联邦滤波算法将多个模型预报结果进行融合,以达到模型缺点互补的效果。结果表明该组合预报模型能够提高预报精度和稳定性,而且组合预报模型对模型结构、参数和初始值带来的预报误差有较好的校正效果。(2)在中期径流预报研究成果基础上,采用隐性的方式挖掘寻求具有普适性的发电调度规则,使水库群发电调度耦合径流预报信息。首先建立粗糙集和决策树两种数据挖掘算法;然后以确定性优化算法获得的发电调度理想过程为基础,挖掘调度数据集中蕴含的发电调度规律;最后依据数据挖掘模型对具有相似性的调度决策合并同化为具有普适性的调度规则,从而获得具有普适性的发电调度规则。(3)为了比较水库群发电调度模型效率,采用模拟-优化的思想制定考虑预报信息的发电预报优化调度图。预报优化调度图中以旬为时间尺度将蓄水量转化为流量量纲,蓄水量同径流量耦合后构成调度图的调度控制空间(OCS),并以OCS为预报调度图的状态变量建立水库群的发电预报优化调度图,从而降低了调度图的优化“维数”并保持了调度图简明的结构。(4)在水库群发电调度模型中,采用显性的方式考虑径流预报信息。首先采用“聚合—分解”的思想,将梯级水库群来水量和库容进行聚合构造虚拟的“单一水库”,然后以聚合来水量和聚合库容作为变量建立聚合分解贝叶斯随机动态规划模型(AD-BSDP),并通过AD-BSDP模型优化计算获得耦合径流预报信息的水库群发电总出力决策图,最后在实时调度阶段,以弃水量最小和蓄水量最大为目标将总出力优化分配至各水库。研究表明,AD-BSDP在具有较大不确定性预报信息条件下,比传统调度图和其他验证模型具有更高的发电效益和稳定性。(5)针对发电调度随机动态规划模型中,径流预报信息不确定性对发电效益和稳定性有较大影响的问题,本章研究建立了滚动时域发电调度模型,在此基础上将径流预报信息不确定性对水库发电调度效益和稳定性的影响进行了定量化的评价。(6)基于预报信息不确定性对发电效益和稳定性的影响评价,将10天径流预报信息划分为1-5天和6-10天两段,前时段预报信息具有较高的预报精度,后时段预报信息具有较大不确定性,但仍有重要参考价值。为此,采用贝叶斯理论将前5天和后5天预报径流信息进行耦合,建立短、中期径流预报信息相套接的聚合分解贝叶斯随机动态规划模型(TS-BSDP)。模拟结果表明TS-BSDP模型的发电效益和稳定性优于AD-BSDP及其他验证模型。最后对全文做了总结,并对有待于进一步研究的问题进行了展望。