硅-有机复合集成电光调制器设计、制备与测试研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zhongjcrazytbag
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微波光子技术在新一代雷达系统、宽带无线接入网以及超宽带微波光子信号处理等领域具有广阔的应用前景。电光调制器是高速光纤通信系统、超宽带微波光子系统的核心器件之一,其主要功能是将数字电信号或高载频模拟电信号调制到光波上,从而进行光域传输或处理。硅-有机复合光子集成技术融合了与CMOS兼容的硅光加工工艺和聚合物材料的高电光系数特性,在高性能集成微波光子系统中极具应用潜力。本论文对硅-有机复合集成电光调制器的优化设计、制备加工与实验测试开展了深入的研究。首先优化设计调制器的波导和电极结构。仿真分析Slot波导结构得到光场限制因子为13.7%,使得光场与射频电场高度重合,提高了电光调制效率。优化Taper型和MMI型模式转换器结构实现Strip-to-Slot的低损耗耦合,耦合效率分别为99.6%和94.1%。重点分析了电极厚度、间距、长度、宽度等参数对调制器频率响应的影响,优化设计得到3d B带宽为77GHz,半波电压-长度积为0.089V·cm,可以同时满足大调制带宽、低功耗和高集成度的要求。然后根据优化结果并考虑实际测试情况设计用于制备调制器的MASK。研究并给出硅-有机复合集成电光调制器芯片制备工艺流程,采用电子束刻蚀工艺制备百纳米狭缝宽度的Slot波导,得到形貌完整的Slot波导结构。最终完成了整个流片工艺流程,获得调制器芯片。接下来对调制器芯片进行通光和电光调制效应测试。实验测量得到光纤-光栅输入/输出垂直耦合损耗约9.36d B,Taper型模式转换器片上损耗低至0.64d B。选取通光较好的调制器进行电光聚合物的填充与极化。搭建片上极化电光调制效应的测试系统,采用商用调制器验证了测试方案的可行性。最后研究基于双平行马赫-曾德尔调制器的微波光子链路无杂散动态范围性能提升方案。分析了产生非线性交调失真的基本理论,研究得到调制器的三个偏置电压之间的优化关系,通过合理调节三个偏置电压值,可以有效抑制三阶交调分量,获得了大的无杂散动态范围。仿真分析了偏置电压偏差、输入光功率和调制器插入损耗对无杂散动态范围的影响,电压偏差在±0.72V范围之内无杂散动态范围可以达到110d B·Hz2/3以上。研究结果为片上高线性微波光调制功能的实现、芯片制备及测试提供了优化方案。
其他文献
Ⅳ型胶原蛋白是基膜的重要组成部分,其正常的结构和功能对维持肾小球滤过屏障有重要的作用,Ⅳ型胶原相关基因的突变会导致Alport综合征、薄基膜肾病、局灶节段性肾小球硬化及肾小管间质损伤等一系列的肾脏病变。因此,系统解析和阐明Ⅳ型胶原蛋白的结构与功能以及Ⅳ型胶原基因相关突变造成的肾脏疾病图谱,对此类疾病的诊治具有重要的指导意义。
结合厂房变电所接地工程案例,分析出现火灾报警问题的原因,并对由此引发的接地问题进行探讨,建议变电所的设计采用TN-C-S系统,设计、制造、施工、运维等环节应重视电缆色标的正确使用。
移动边缘计算(Mobile Edge Computing,MEC)是一种移动边缘网络环境中的计算模式。MEC将网络内用户设备产生的计算任务迁移至位于网络边缘的计算节点进行计算,并将计算结果返回给设备,这一过程被称作任务卸载(Task Offloading)。任务卸载在大幅度提高用户设备内程序运行速度的同时,还能够减少通讯延迟、节省设备能耗,提升处于网络内的用户设备的服务质量(Quality of
时间序列广泛存在于实际的复杂动态系统中,对其进行分析与建模来挖掘复杂系统动态行为变化的同时,开展前瞻性预测并提供辅助性决策具有重要的意义。然而,随着大数据时代的发展,并且实际系统往往处于复杂的噪声环境中,给设计适合于动态系统的在线学习方法带来了一定的困难。因此,本文以基于鲁棒核自适应滤波器的时间序列在线预测为课题,设计鲁棒的在线预测模型并提高更新过程中对噪声的抑制能力,降低算法的时间和空间复杂度,
随着通信技术的发展以及Wi-Fi在城市的全面覆盖,利用Wi-Fi信号进行环境感知逐渐成为研究热点,动作手势识别、摔倒呼吸检测在人机交互、财产安防、健康监护等领域都得到了广泛的应用。基于Wi-Fi的方法设备价格低廉可广泛部署,不要求被检测人员携带任何特殊设备。与基于计算机视觉的方法相比,其对光照条件无要求,也不存在视觉盲区和隐私泄漏的问题,为实际应用提供了极大便利。本文主要研究内容如下:本文提出了一
随着现代网络的快速发展,无线数据流量产生爆炸式增长,移动应用程序对网络延迟的要求越来越高,因此网络服务提供商在降低服务延迟和带宽压力方面面临巨大挑战。5G凭借高速率、低时延、多连接的特性,可满足各类行业和企业对人工智能和高性能服务的巨大需求。移动边缘计算(MEC)作为5G技术的重要组成部分,其通过在网络边缘部署计算和存储资源为下一代5G接入网络提供极低的延迟服务。但是移动边缘中计算资源和存储容量是
发光二极管(Light-Emitting Diode,LED)和智能手机的普及促进了基于可见光通信(Visible Light Communication,VLC)室内定位技术的研究,使其成为了室内定位技术中的研究热门之一。室内环境比较复杂,镜子、玻璃和屏幕等光滑物体会发生镜面反射,产生与真光源镜面对称的伪光源。在定位过程中,如果使用了伪光源的位置信息会降低定位精度,甚至错误定位,降低定位的可靠性
随着信息技术时代的到来,各种功能器件在信息传输及处理等领域越发重要,人们对器件的性能、集成度等要求也越发严格。目前,集成电路发展因难以突破物理极限,受到带宽不足、信号延迟和热噪声等因素制约,导致“电子瓶颈”的存在。而集成光子芯片作为信息传载的新兴领域,具有带宽大、微型化和可靠性高等优势,或将成为解决该问题的关键技术之一。其中,亚波长光波导结构在尺寸量级匹配和突破衍射极限的问题上显现出潜在的应用价值
浮法玻璃是当今世界生产效率最为高效、生产质量良好的平板玻璃生产方式之一。为了进一步优化浮法玻璃的生产效率,除了改进浮法玻璃的生产制造工艺外,还需要在浮法玻璃生产线的成型区域对玻璃厚度等重要参数进行长期实时的监测。尤其当浮法玻璃生产线开始对玻璃厚度进行转换时,对于玻璃厚度的实时监控显得极其重要。本文根据浮法玻璃生产行业的应用需求和现有技术的局限性,研制了一套基于游标调谐分布式布拉格反射(Vernie
面对着日益增长的无线数据流量需求,毫米波通信以其丰富的频谱资源成为了支撑高速无线通信的重要技术。同时,随着5G商用的进一步铺开以及未来6G网络带来的智慧城市、自动驾驶等新兴产业,毫米波通信所具有的超低时延、超大带宽的特性将使其成为促使新业务发展的最佳驱动力。但是,由于毫米波信号频率高、波长短等特点,毫米波通信系统的信道衰减剧烈,导致其传输距离大大缩短。为了克服这些缺点,毫米波通信系统常采用高度定向