论文部分内容阅读
从20世纪中叶以来,以钛及钛合金为主的生物医用材料开始广泛应用于人体失效的硬组织替换,并在之后的研发、应用中取得了突破性进展,极大的提高了人们的生存质量。生物医用钛合金由于其弹性模量低、强度高、生物相容性好、比强度大、耐蚀性能优异等特点,成为人体医用植入产品的首选材料。本课题以团簇模型理论作为研究基础,用CN14团簇模型表示体心立方结构β-Ti合金的成分式,根据团簇内各合金化元素间的混合焓△H大小(△H用于团簇内部表征原子间的相互作用力的大小,△H越负相互吸引力越大,△H越正相互排斥力越大),并在电子浓度e/a=4.17的约束下,从理论上确定以Sn充当中心原子、Ti为壳层原子、Nb为连接原子的“团簇+连接原子”模型[SnTi14]Nb3.用真空电弧熔炼炉将原料熔炼成Φ30mm,高10mm钮扣状合金铸锭,经过成分分析、金相观察、XRD测试和纳米压痕测试等测试方法的检测。我们的实验主要分为三个阶段,第一阶段利用Zr原子取代中心原子Sn,团簇的实际表达式为[(Sn1-Tix)(Ti14-xZrx)]Nb3(x=0.0.3、0.5、0.7);第二阶段在[SnTi14]Nb3的基础上逐步减少Sn元素含量,得到[Sn1-xTi14+x]Nb3(x=O.O.1、0.2、0.3、0.4)的团簇式;第三阶段是在第二阶段减少三元合金中Sn含量的基础上,加入Zr原子进行合金化,使之取代团簇壳层上的Ti原子,成分式为[(SnxTi1-x) (Ti14-yZry)]Nb3(X由三元合金确定,Y=0.2、0.4、0.6、0.8)。实验验证了在钛合金中团簇模型应用的可行性,证明了团簇结构与合金相组织之间存在一定联系,随着团簇内部混合焓降低,钛合金的β相稳定性也随之下降合金由β相向α相过渡。在三个阶段的试验中,三元合金[Sn0.8Ti14.2]Nb3的弹性模量(65.6 GPa)和硬度(959.3HV)最低,此时合金由α”+β相共同组成。在三元合金基础上添加Zr元素的[(SnxTi1-x)(Ti14-yZry)]Nb3系列合金中,随着Zr原子的增多,弹性模量逐渐增大,Zr原子的加入增加了合金的β相稳定能力,此时的Zr元素不再为中性元素,而是作为β相稳定元素。并且Zr原子的加入会增加合金的硬度。