有机液态氢化物的分子结构对其储氢性能的影响研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:moke707
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氢气的高效储存和运输是制约氢能发展的关键瓶颈。有机液态氢化物储氢材料因其具有储氢量大、安全方便等优势而受到广泛关注,有机液态氢化物的储氢性能与分子结构紧密关联。本论文通过系统考察不同液态氢化物的加氢-脱氢效率,揭示分子结构对储氢性能的影响规律,以期为筛选高效储氢材料提供理论基础。首先以N-乙基咔唑、2-甲基吲哚、咔唑、蒽为加氢反应模型化合物,以Ru/UIO-66为加氢反应催化剂,研究它们的加氢反应性能;然后以12H-N-乙基咔唑、8H-2-甲基吲哚、12H-咔唑、14H-蒽为脱氢反应模型化合物,以Pd/UIO-66为脱氢反应催化剂,研究它们的脱氢反应性能。最后通过Material Studio中的Dmol~3模块计算了各个模型化合物的分子结构参数,得到分子的前线轨道能量、电荷布居分析、分子键级等结构参数,分析分子结构影响其加氢、脱氢反应性能的内在机理。研究表明:咔唑的加氢转化率高于蒽的加氢转化率,12H-咔唑在190℃时即可脱氢,而14H-蒽在200℃时仍难以脱氢,12H-咔唑的脱氢温度低于14H-蒽的脱氢转化率,在环上引入“N”杂原子有利于提高有机液态氢化物的储氢性能;N-乙基咔唑的加氢速率和转化率均高于咔唑的加氢速率和转化率,12H-N-乙基咔唑在175℃时即可脱氢,而12H-咔唑在190℃时才可脱氢,12H-N-乙基咔唑的脱氢温度低于12H-咔唑的脱氢温度,烷基侧链的存在有利于提高有机液态氢化物的储氢性能。N-乙基咔唑的加氢速率高于2-甲基吲哚的加氢速率,12H-N-乙基咔唑的脱氢速率高于8H-2-甲基吲哚的脱氢速率,在一定范围内增加芳香环数(二环增加至三环)有利于提高有机液态氢化物的储氢性能。模拟计算发现,“N”杂原子和烷基侧链的存在影响分子的电荷分布,降低其附近的化学键的强度,使其附近成为分子最易发生化学反应的区域;引入“N”杂原子、烷基侧链以及适当增加环数均可以降低分子前线轨道的能隙,提高分子的化学反应活性。
其他文献
气体分布器是填料塔的原料气初始均布装置,其性能优劣在一定程度上影响塔内传质与天然气的处理效果。双切向环流式气体分布器结构简单、压降低、均布性好、综合性能相对优良,在化工生产领域中得到了广泛应用,但经研究发现,双切向环流式气体分布器出口处仍然存在较大区域回流,影响了整体均布性的提高,这是由双切向环流式气体分布器的结构形式特点所决定,无法通过结构参数优化或简单的结构形式改进解决。因此,在双切向环流式气
桩-土接触面的力学特性是影响桩承载性能的主要因素,土的蠕变性质是导致桩土接触面的长期强度小于其瞬时抗剪强度的重要因素。同时,桩的粗糙度对桩土接触面的力学性能有重要影响。目前对于桩土接触面力学性能的研究主要集中在桩表面粗糙度及时间效应两个方面,但将二者结合起来的研究还并不多见。研究不同粗糙度的桩-土接触面在长期荷载作用下的力学性能对储罐长期稳定性分析提供了依据。本文以黏土及不同粗糙度混凝土板的接触面
热含蜡原油管道停输后,油品温度下降,原油流动性恶化,管道再启动困难。为获取适用于现场实际管道再启动的工程解法,本文采用数值计算、室内及现场实验结合的方法,对管道停输温降、管道临界启动流量恢复规律、管道启动置换过程中土壤温度场恢复对启动流量的影响开展深入研究。简化埋地热油管道停输温降计算模型,管内原油采用均一化处理,忽略径向油温差异。引入滞流点将原油温降过程分为纯自然对流换热和纯导热过程,采用CVM
温度-渗流-应力耦合作用下低渗透岩石的渗透演化规律关系到诸多深部地下工程的长期稳定性及安全问题,随着深度的增大,地应力、温度和流体压力均随之增大,形成了复杂的热流固耦合系统,在此系统中,岩石的渗流场受到应力产生的压缩作用和温度产生的损伤作用而不断发生演化,而渗流场的演化会反过来影响应力场的分布,最终影响工程的长期稳定性。目前,针对热流固耦合作用下岩石压缩阶段渗透演化的深入分析并不多见,因此开展温度
粉土在全国分布广泛,山东省也有大面积的黄河冲积粉土分布,并且黄河冲积粉土多属于铁路路基C组细粒土填料,必须经过改良后方可使用。改良粉土路堤在实际环境中常处于非饱和状态,由于土中气相和气-液交界面的存在,使得非饱和土的力学性质与饱和土有很大差异。改良粉土在工作年限内还要经受干湿循环等环境变化,干湿循环对土体力学性质的影响不容忽视。本文以木质素-石灰改良黄河冲积粉土为研究对象,首先通过室内常规土工试验
随着海上、沙漠和边际油田的开发,油气混输管路应用日益广泛。受到腐蚀、第三方破坏等影响的油气管道一旦发生泄漏,将造成严重的环境污染。当前的管道泄漏研究多局限于单相流体,而多相流相流型复杂、流动状态非常不稳定,在泄漏过程中将发生相分离,导致泄漏介质气液比例与主管有很大差异。本文通过实验研究与仿真模拟探讨气液两相流在管道孔口处的相分离现象,研究不同参数下气液两相流体流经孔口的相分离规律。主要完成研究工作
随着陆上石油的勘察探明量增速放缓,人们愈来愈关注海上油气资源的开发,海洋石油资源量占全球石油资源总量的比例逐步上升,我国南海油气资源的开发也正在如火如荼地进行。导管架平台是使用最广泛的海上油气勘探开发装备,超强台风引发的极端载荷对导管架平台的危害也愈发引人关注,本文依托国家自然科学基金“极端海洋环境下海洋固定平台生存能力及动力灾变应急对策研究”,对超强台风下导管架平台动力灾变及自存能力进行研究,为
作为煤炭资源清洁化利用的核心,费托合成反应的产物多为直链烷烃。低碳烷烃异构化可用于生产高辛烷值汽油,产物硫含量低、无不饱和烃,为优质清洁能源。目前常用的工业加氢异构化催化剂是Pt或其他过渡金属负载在氧化铝或分子筛载体上的金属双功能催化剂。微-介孔复合分子筛结合了介孔材料优异的传质性能与微孔分子筛的强酸性和高水热稳定性,介孔的引入可改善传统微孔催化剂传质性能,通过改变合成条件可设计制备所需孔性质与酸
我国液化天然气(LNG)进口量持续增长,由于我国接收站的储罐储量都比较少,现货接收量日益提高,为了优化接收站的运行能力,提高接收站的接收容量,贫富液混装势在必行。LNG特性差异决定不同气源的产品不宜混装,一方面会出现LNG大量挥发,超出工艺处置能力时会排放到大气中,造成能量损失和环境污染;另一方面会给储罐带来危险,严重影响接收站及周边环境的安全。因此,本文通过建立LNG大型储罐贫富液混装蒸发模型,
随着管道服役时间的增长,管网复杂性的增加,管道泄漏时刻威胁着管网的安全运行。管道发生泄漏后,迅速识别泄漏工况并定位泄漏点是解决问题的关键。特别是近年来“智慧管道”的建设成为我国管道发展的新趋势,与“智慧管道”相契合的网络化、数字化、自动化的泄漏检测手段成为油气储运专业人员的研究重点。本文以输油管道泄漏产生的负压波为研究对象,在利用室内实验环道采集不同工况压力信号的基础上,采用改进的经验模态分解(改