论文部分内容阅读
无线传感器网络(Wireless Sensor Network,WSN)在近十余年内飞速发展,这项诞生于军事应用的技术目前已广泛应用于智能家居、可穿戴设备、仓储物流管理、医疗监护、工农业生产、环境保护等诸多领域。蓝牙低功耗(Bluetooth Low Energy,BLE)的出现让蓝牙技术得以立足于对无线通信性能有着较高要求的WSN领域,也为研发设计提供了更多可能。随着科技的进步与物质生活水平逐渐提升,人们对WSN设备也提出了更高的要求。更长的续航时间、更小的体积、更丰富的功能集成、更优质的用户体验、更灵活的应用场景适应性也是研发者不断创新的动力与方向。本课题主要研究工作与贡献如下:1.低功耗小型化多模态感知WSN节点与网关电路设计:根据设计需求广泛对比选型器件,分析电路细节,控制静态电流与外围电路能耗,为解决WSN节点能量受限的问题打下基础。2.高效率微功率能量收集与管理电路设计:具有低电压驱动能力的电源模块,可收集包括太阳能的多种环境能量,减缓节点能量的单向递减过程,延长节点的工作寿命,解决节点能量受限问题。合理设计电源拓扑结构与电压控制组合,提高电源管理模块效率,减少不必要的能量损耗。3.多模态感知功能协调及多源数据融合与高效传输算法:合理协调各功能模块的工作状态,提高节点乃至整个系统的效率。而在完成环境感知、运动感知、体征感知、位置感知等多模态感知后需要进行多源信息处理与融合,网关还需要深度融合多节点数据,剔除冗余信息、对有效数据进行压缩。设置数据变化阈值,减少不必要的无线传输以降低功耗。4.WSN多终端系统结构设计:BLE提高了WSN的上限也降低了WSN通过手持终端设备(如手机)与远程控制终端建立完整系统架构的设计门槛。相较其他WSN额外增加一条可选链路以提高网络稳定性与可操作性。并且针对低功耗节点设计了射频发射功率自适应控制算法,在保证有效通信的同时降低了节点射频功耗。