新旧18650锂离子电池的热特性及热稳定性实验研究

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:xiangshuhua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纯电动汽车能够减轻能源枯竭和环境污染的问题,其动力系统广泛采用锂离子电池,具有广阔的发展前景。然而锂离子电池在实际使用过程中存在热安全性差的问题,废旧电池的热安全性问题更为突出。本文主要通过新旧单体电芯和电池模组的热特性、循环寿命和热稳定性实验,研究其变化规律,为电池包的热安全预警提供依据。
  首先,对18650-NCM-2.6Ah单体电芯在绝热量热仪中进行比热容测试和在恒温恒湿箱中进行不同条件下的充放电实验研究。实验发现,该款电池的比热容值为793.02J/(kg℃);充放电的容量和能量随着环境温度的降低和充放电倍率的增加而减少;当环境温度下降至-20℃时,单体电芯完全充不进电,当环境温度为-15℃时,单体电芯的放电容量是标称容量的34%;放电过程的最高温升值比充电的高,在低温和大倍率的条件下更为明显。
  其次,针对18650-NCM-23.4Ah电池模组在恒温恒湿箱中进行不同条件下的充放电实验研究。对比电池模组和单体电芯的热特性,发现在低温环境(-20℃)下,单体电芯1C无法放电,而电池模组1C放电容量是标称容量的86%:电池模组的中心电池温升远高于单体电芯的温升;单体电芯0.6C放电的产热量为365.20J,而电池模组中心电池0.6C放电的产热量为970.05J,约为单体电芯的2.66倍。
  电池在反复充放电后,容量会逐渐下降,变成废旧电池,而在电池的全生命周期中,大部分时间处于废旧状态,因此研究废旧电池的热特性和热稳定性是有必要的。最后,对新18650-NCM-2.6Ah电池进行标准循环寿命实验,得到剩余容量分布在不同区域的四块电池,对其分别进行恒温恒湿箱中的热特性实验和绝热量热仪中的热稳定性实验。
  实验结果表明,循环实验初期放电容量会呈现短暂的上升趋势;电池充放电的容量和能量随着废旧电池老化程度的升高而下降;对比全新单体电芯和不同废旧电池发现,在不同条件下,旧电池的废旧程度对于电池在充放电过程中最高温升值的影响可忽略不计,但在低温和大倍率的条件下,旧电池的最高温升普遍比全新电池的最高温升高;电池的老化程度越高,电池自放热起始温度点越低,电池的热稳定性越低,发生热失控的概率越高。
其他文献
电动汽车由于其节能环保特性得到迅猛发展,但是冬季供热成为制约其发展的一个瓶颈,开发出高效、节能、适应宽温区的热泵系统对提高制热性能、延长行驶里程、拓宽电动汽车应用范围具有重要意义。针对常规单级压缩热泵系统在车外环境温度较低时性能衰减严重的问题,本文开展了电动客车热泵系统的制热性能提升的理论与实验研究,将准二级压缩中间补气技术与余热回收相结合,设计开发了基于准二级压缩的电动客车中间补气热泵空调系统和
学位
蒸气压缩式制冷技术作为主动式冷却方式,具有制冷系数高,易于使芯片等表面温度均匀,并使电子设备在较低的温度下进行工作等优点,因此可以提高电子设备的可靠性和使用性能。但此种冷却方式主要难点在于压缩机的小型化和可靠性。线性压缩机作为一种新型高效压缩机,具有电机效率高、摩擦损失低、结构简单紧凑、可无油运行和可变容量调节等优点,从而使得线性压缩机在电子冷却应用中很有优势,因此研究线性压缩机在蒸发压缩式制冷系
质子交换膜燃料电池是一种能够将化学能直接转化为电能的清洁发电装置,由于其反应产物清洁,且反应物可再生,发电效率高,因此被人们认为是非常具有潜力的可再生能源发电装置。对于质子交换膜燃料电池,在阳极,以氢气作为燃料气体,而在阴极,氧气或空气作为氧化剂气体。氧气和氢气分别在阴阳极催化剂的作用下发生化学反应从而产生电能发电。  对于质子交换膜燃料电池研究的最终目的是提升电池的性能输出,同时改善其水热管理以
熔盐以其工作温度范围广、热容量大、传热效率高、热稳定性好、成本低、工作压力小等特点,作为中高温传蓄热介质可广泛应用于太阳能热发电、工业化学处理、余热利用等领域。熔盐纳米流体是在熔融盐的基础上添加纳米颗粒而形成的一种储热流体,可以显著提高熔盐的比热和导热系数,降低熔盐的粘度,对于提高蓄热密度和降低蓄热成本具有重要意义。为研究熔盐纳米流体相对于熔盐在管内流动换热的增强效果,本文通过对原自主搭建的实验台
空气源热泵冬季制热运行时,室外换热器的结霜问题影响系统的制热性能。当前,空气源热泵普遍采用逆循环方法除霜,即通过四通换向阀的换向使制冷剂逆向流动。该除霜方法存在能耗损耗较高,除霜时须停止制热并影响供暖体验等缺陷,特别是对于大型的空气源热泵,逆循环除霜已不再适用。本文提出了一种采用液态制冷剂过冷轮换除霜的新型空气源热泵系统:多台室外换热器并联,通过阀门切换使多台室外换热器在蒸发器和过冷器间转换,进而
气固两相流动广泛存在于自然界与工农业生产中,关于气体中悬浮颗粒输运特性的研究在气溶胶科学、燃烧学、环境科学以及材料合成等领域中的重要性日益突出。颗粒运动过程中往往会受到气体力的作用,包括曳力、升力、热泳力、布朗力、重力、BaSSet力、虚拟质量力、压力梯度力等等。一般情况下,曳力起主导作用。其它力要小于颗粒所受曳力,但其对颗粒在流场中的运动轨迹和沉积规律会产生显著的影响。此外,实际颗粒大多为非球形
能源是人类生存和发展的重要物质基础,是人类从事各种经济活动的原动力,也是人类社会经济发展的重要标志。随着经济的高速发展,我国能源问题也面临着严峻的挑战。因此,节约能源,提高能源利用率是我国面临的一项重要任务。在诸多工业过程和可再生能源利用领域,存着在大量的低温热能资源,而工业余热回收利用在各种能源利用技术中收到了广泛关注。其中,有机朗肯循环的低温余热发电系统是低温热能利用的一种有效形式。根据不同类
开发可再生能源是解决落后地区能源结构的优化方式,不仅能够保证能源供给、保护环境,更能加快经济和社会持续发展。部分偏远地区人群稀少,集中发电系统电力传输损失大成本高,同时污染环境。因此,开发分布式能源热电联供系统既能解决用电需求又能解决供暖问题。太阳能资源丰富,取之不尽,利用太阳能进行热发电是目前比较现实的解决方案。目前,人们对于槽式太阳能集热蓄热及有机朗肯循环的联合运行研究主要停留在理论阶段,在实
化石能源使用引起的全国性雾霾问题使得国家大力发展可再生能源,但由于可再生能源的间歇性、不稳定性以及电网发展的滞后性,导致弃风弃光问题较为严重。另一方面,国家出台了煤改电政策,加大峰谷电价差,以期调节电网的负荷问题。利用电蓄热技术,不仅可以解决可再生能源电力的消纳问题,而且可以实现电网的削峰填谷。在显热蓄热的基础上充分利用蓄热材料的潜热,可以提高材料的蓄热密度,降低蓄热成本。本文选用混合熔融盐作为相
学位
近年来,我国风电、太阳能发电发展迅速,然而由于电网发展滞后等因素的影响,我国新能源发电消纳问题日益突出。采用蓄热技术,将晚上的低谷电或可再生能源发电通过电蓄热形式储存起来用于白天建筑物供暖或工业热利用是一种有效的解决方法。相比于双罐蓄热,熔盐单罐蓄热技术具有成本低、系统简单等优点,尤其适用于小型建筑物冬季供暖。将盘管换热器与圆柱形隔板集成于单罐内,充分利用了盘管换热器传热系数大、空间紧凑和隔板能有