荧光及共振瑞利散射光谱法检测环境中痕量手性污染物

来源 :重庆三峡学院 | 被引量 : 1次 | 上传用户:nnlan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自然界广泛存在手性(Chirality),而手性对映体(Chiral enantiomers)无论是人工的或是天然的,在自然环境中扮演着的奇妙角色,主导着生命体的奥秘。手性农药的使用有效的增加了粮疏瓜果的产量,解决了人类的温饱问题;手性药物的使用攻克某些疑难杂症;手性添加剂的使用可以改善提高食品的品质和稳定性。但是,任何事物都具有两面性,手性农药对映体有可能严重危害生态环境和人体健康,曾有手性药物对映体导致了畸形儿童的产生,手性添加剂的大量使用也使食品环境变得错综复杂。因此,我们把对人体和环境有害的一类手性物质或对映体统称为手性污染物。手性污染物的不同对映体的生物毒害作用有所差异,对应的环境行为即降解和生物代谢过程也存在不同。因此,分析分离和测定环境中的手性污染物,须弄清楚手性污染物的不同对映体在环境中的选择性行为和生物效应,表征和探索手性对映体的作用和变迁,对于生态环境和人体健康来说都非常重要。本文以L-青霉胺、马拉硫磷两种手性污染物为研究对象,以金纳米粒子(AuNPs)、半导体量子点(QDs)以及藻红B(EryB)为探针试剂,以荧光光谱,共振瑞利散射光谱为主要的光谱分析方法,探究了研究对象与光学探针试剂之间的相互作用对体系荧光光谱以及共振瑞利散射光谱的影响。文中讨论了光谱特征、最佳反应条件等的影响,建立了荧光光谱法对手性药物L-青霉胺的测定,建立了两种不同的共振瑞利散射光谱法对手性农药马拉硫磷的测定。同时对各个体系的机理进行了分析讨论,并将建立的新方法用于实际样品中,取得了满意的结果。本论文在国家自然科学基金(No.21175015、21475014)和重庆市研究生创新项目(CYS17290)的资助下完成。其主要研究内容如下:1.基于青霉胺和N-乙酰基-L-半胱氨酸修饰的CdTe量子点与Cu2+的竞争反应检测青霉胺D-青霉胺(D-PA),作为一种主要的对映体,通常用于诊所用药。但是,另外一种对映体L-青霉胺却有毒。因此,在生物医药或者环境样品中检测L-青霉胺是一项很有意义的工作。N-乙酰基-L-半胱氨酸修饰的CdTe量子点用作荧光探针,成功用于检测L-青霉胺。当有Cu2+存在的情况下,CdTe量子点的荧光被显著猝灭由于Cu2+能够与其表面的N-乙酰基-L-半胱氨酸结合,然而,在上述体系中加入L-青霉胺后,体系的荧光能够得到一定程度的恢复。实验结果表明,当加入L-青霉胺后,体系的缓冲溶液、Cu2+的浓度等会影响体系的荧光强度。在最佳实验条件下,体系的荧光恢复程度与L-青霉胺的浓度在2×10-7-4×10-6mol/L呈线性关系,其相关系数为R2=0.9980.因此,建立了一种新的、简单、快速的检测L-青霉胺的荧光方法,将该方法用于人血清样品和医院废水样品中检测L-青霉胺,取得了满意的结果。2.藻红B作为光散射探针的共振瑞利散射技术检测痕量手性农药马拉硫磷以藻红B作为光散射探针,建立了一种简单、灵敏的光谱方法用于测定手性农药马拉硫磷基于共振瑞利散射(RRS)技术。通过记录体系的荧光光谱、共振瑞利散射光谱以及紫外-可见吸收光谱,讨论藻红B、Pd2+和马拉硫磷三者之间的反应。在最佳实验条件下,当藻红B、Pd2+和马拉硫磷三者单独存在或两两存在时,体系的RRS强度都非常弱。但三者同时存在时,体系的RRS强度显著增强,这可能是由于在酸性条件下,Pd2+能够与马拉硫磷的水解产物和藻红B形成三元复合物。同时,当Pd2+存在时,藻红B的荧光显著猝灭,当再向上述体系中加入马拉硫磷后,荧光强度进一步猝灭。因此,进一步证明体系中形成了三元复合物。在最佳实验条件下,体系的RRS增强的强度与马拉硫磷的浓度在0.012-0.8μg/mL范围内存在良好的线性关系。最低检出限为1.7ng/L,相关系数为0.9960。因此,建立了一种检测马拉硫磷新方法并在实际样品中取得了满意的结果。3.基于L-组氨酸功能化的金纳米-Pd2+测定环境中手性农药马拉硫磷的共振瑞利散射光谱法研究本实验以L-组氨酸作为修饰剂和还原剂,采用一锅合成法合成了具有蓝绿色荧光的L-组氨酸修饰的金纳米。在Pd2+存在的情况下,L-组氨酸修饰的金纳米可以作为共振瑞利散射(RRS)探针,检测手性农药马拉硫磷。在最佳实验条件下,Pd2+可以使L-组氨酸修饰的金纳米的荧光猝灭,同时RRS强度有明显的增强。当向上述体系中进一步加入马拉硫磷后,体系的荧光强度无明显变化,而体系的RRS增强的程度更明显。基于此,建立了检测马拉硫磷的共振瑞利散射光谱法。我们讨论Pd2+、缓冲溶液等反应条件对体系的RRS强度的影响。在最佳实验条件下,RRS增强的强度与马拉硫磷的浓度在0.12-3.2μg/mL存在良好的线性关系,线性方程为ΔIRRS=543.72CMala+21.06,相关系数为0.9985。文中讨论了三者之间的反应机理以及RRS强度增强的原因。同时,新建立的测定马拉硫磷的方法在实际应用中取得了满意的结果。
其他文献
金属酶在许多生命过程中起着至关重要的作用,它们可以催化许多不同类型的生物反应,具有高效性和高选择性。了解金属酶的催化反应机理可以对酶的改造和利用提供理论指导。近年来,随着量子化学理论方法以及计算机计算速度的飞速发展,量子力学/分子力学(QM/MM)组合方法已经成功地运用在阐述金属酶催化反应机理和选择性。在本论文中,我们采用QM/MM方法研究了细菌中含镍槲皮素双加氧酶的催化反应机理和催化选择性,取得
《普通高中语文课程标准(2017年版)》在学科核心素养、课程目标以及多个任务群中都强调对逻辑论证知识的掌握。语文逻辑知识的教学成为高中语文课堂上不可或缺的重要内容。众所周知,议论文是进行逻辑教学的重要载体。通过文献研究可以发现《劝学》作为经典的议论性文言文,语文学界对《劝学》的阅读教学进行了较多的研究,但是关于逻辑论证方面的研究却很少,还存在很大的研究空间。本文针对逻辑知识在议论文中的匮乏以及教材
旋转流场式陶瓷干法制粒工艺可在很大程度上改善陶瓷原料制备存在的高消耗、高污染、低产出等缺陷。但由于旋转流场式陶瓷干法制粒过程存在粉体固体回转区、粉体轴向运动强度低等现象,导致制备的颗粒流动性指数低、颗粒级配过于单一、颗粒组分不均等问题,造成坯体压制过程易气孔、开裂等现象。因此,针对旋转流场式陶瓷干法制粒过程存在的问题,分析旋转流场式陶瓷干法制粒过程流场特性及形态,揭示旋转流场式陶瓷干法制粒粉体均化
在实际工程中出现的立管、平台桩腿和大桥桥墩等简化成的单圆柱已经成为现在海洋工程结构中最常见的基本单元之一,国内外众多学者对单相无限长圆柱绕流展开了大量的研究工作。但在较低雷诺数条件下,有限长绕流、带有自由液面的绕流以及自由液面和端部效应相互作用下绕流的研究相对较少,此时流场的复杂性也对进行试验研究提出了新的更大的挑战。因此,采用合适的湍流模型进行数值模拟显得尤其重要,本文通过三维数值模拟,对上述三
放射治疗(RT)是一种重要的肿瘤治疗方法,但是具有若干限制,例如高剂量的X射线照射和恶性肿瘤的辐射耐受的而引起的全身副作用。用近红外光(NIR)照射进行的肿瘤的光热疗法(PTT)是另一种微创治疗方式,但是当前的研究主要集中在Ⅰ型NIR(NIR-1)窗口(700-950nm)。研究报道,通过使用精心设计的多功能纳米复合材料实现RT与PTT组合,达到癌症的高效协同热放射治疗。然而,获得生物相容性多功能
非连续颗粒增强钛基复合材料因具有加工容易、成本低和综合性能好等优点,而具备广阔的应用前景。本文利用TiB+TiC+La_2O_3三元颗粒增强IMI834钛基复合材料,开展了微观组织观察、室温拉伸和裂纹扩展试验,研究了增强体体积分数对钛基复合材料显微组织、力学性能和裂纹扩展行为的影响规律,阐明了增强体对材料断裂和裂纹扩展的影响规律,揭示了增强体在钛基复合材料中拉伸和裂纹扩展中的作用机制。本课题通过原
木质纤维素作为一种丰富的可再生资源,有望通过转化为生物质能源及多种化学品,替代当前普遍使用的化石原料。因此利用多种技术策略提高木质纤维素全组分高效利用和转化成为近年来的研究热点和重点。本论文基于现有的白腐真菌预处理木质纤维素增效酶解糖化的研究基础,拟研究不同生物质的木腐真菌/低温共熔溶剂(DES)耦合预处理技术,以进一步提高木质纤维素的酶解糖化效率,同时使用固定床热裂解技术将木质素残渣转化为高附加
本文主要研究如下具有Degn-Harrison反应格式且满足齐次Neumann边界条件的反应扩散化学模型:通过详细分析相应的特征值问题,研究模型唯一正常数平衡解的局部渐近稳定性,Turing不稳定性和Hopf分支.特别的,借助于反应扩散方程的稳定性理论和中心流行定理,获得了确定空间齐次Hopf分支性质的显示公式,其简化了Dong等已获得的结论(2017).为了验证对所获得的理论结论,给出了适当的数
乳酰谷胱甘肽裂合酶(Lac)是降解生物体内丙酮醛的重要酶之一。食品级微生物谷氨酸棒杆菌ATCC13032基因组上的NCgl0106预测为乳酰谷胱甘肽裂合酶基因,但尚缺乏实验验证。本试验首先通过PCR技术扩增出预测的谷氨酸棒状杆菌ATCC13032乳酰谷胱甘肽裂合酶基因lac,并将之与表达载体pET-28a连接,转化BL21(DE3)感受态细胞,成功获得工程菌E.coli BL21(DE3)/pET
随着社会发展,能源短缺严重限制了经济社会的可持续发展,因此大力开发可再生清洁能源迫在眉睫。半导体光催化技术可以利用太阳能光解水制取氢气,将低密度的太阳能转化为高密度的化学能,成为解决能源问题的有效途径之一。非金属石墨相氮化碳(g-C_3N_4)半导体因其独特的光电特性、合适的禁带宽度以及优异的化学稳定性等特点,被广泛应用于光催化领域,在光解水制氢能方向具有重要的科学研究价值。但是其较低的比表面积和