【摘 要】
:
随着全国机动车保有量的不断增加,驾车出行已经成为人们最主要的外出方式,为了安全出行,对机动车发动机进行故障检测具有重要意义的。然而传统的故障检测方法不仅需要专业的先验知识,并且检测效率低下。随着深度学习在图像、语音识别等领域应用越来越广泛,这给机动车发动机故障自动检测提供了一种新的思路。本文利用深度卷积网络对基于机动车发动机声信号的故障检测算法开展研究,同时设计和实现集采集、传输、分析于一体的故障
论文部分内容阅读
随着全国机动车保有量的不断增加,驾车出行已经成为人们最主要的外出方式,为了安全出行,对机动车发动机进行故障检测具有重要意义的。然而传统的故障检测方法不仅需要专业的先验知识,并且检测效率低下。随着深度学习在图像、语音识别等领域应用越来越广泛,这给机动车发动机故障自动检测提供了一种新的思路。本文利用深度卷积网络对基于机动车发动机声信号的故障检测算法开展研究,同时设计和实现集采集、传输、分析于一体的故障检测系统,主要研究工作及成果如下:(1)构建了一个机动车发动机声信号数据集,该数据集包括101台大型运输车的正常和故障发动机的声信号,其中正常发动机数据包括怠速和加速两种情形下采集的声信号,故障发动机数据包括缺一个缸和两个缸不工作情形下采集的声信号。对声信号进行预加重、分帧以及加窗等预处理后,通过梅尔倒谱变换来提取声信号的梅尔倒谱系数(Melscale Frequency Cepstral Coefficients,MFCC)特征;同时为了验证网络的鲁棒性,通过切割、加噪、调音等处理对声信号进行数据增强。(2)给出了一种基于门控双卷积神经网络的机动车发动机故障检测算法。为了在梅尔频谱图中提取发动机声信号故障辨识性的特征并精确实现故障识别,本文在门控卷积神经网络(Gated CNN)基础上设计了门控双卷积网络,通过添加卷积模块和门控单元对特征信息传递过程加以控制,能够更好地保留发动机声信号特征中的时频结构信息,进而有效缓解过拟合现象并提升识别准确率。利用所构建的机动车发动机声信号数据集进行实验,对正常和有故障声信号的识别准确率最高达到了99.9%;对怠速与加速情况下的故障类型识别时准确率达到了90%以上,通过对数据集添加噪声和音频调音后的故障类型识别时仍然能取得较高的识别率,表明该算法具有较好的鲁棒性,能够为基于声信号的故障检测提供理论依据和技术支撑。(3)在所提出算法的基础上,设计实现了一个基于声信号的机动车发动机故障检测系统。该系统包括采集终端、数据库管理平台以及深度学习模型及故障诊断模块。采集终端通过采集机动车发动机声信号,一方面将其传输至服务器端,另一方面对其进行MFCC特征提取,利用载入的深度学习模型对发动机进行故障诊断,并显示声信号时域图、频域图、梅尔谱图以及识别结果。服务器端数据库管理平台的功能为对采集数据进行添加、查找和删除等基本操作,同时将接受数据统一命名进行管理。深度学习模型及故障诊断模块分为两部分,一方面构建深度学习模型,利用接收到的声信号数据进行模型训练,然后将该模型下载至采集终端;另一方面在服务器端通过训练后的深度学习模型对实时接收的声信号进行故障诊断。
其他文献
原子核电荷半径是原子核的基本属性之一。原子核的形变、壳结构、有效相互作用、原子核的奇特现象、以及核内的物质密度分布与原子核电荷半径密切相关。在最新的数据库中发现了908个核半径实验值,其中大多数核的中子数大于质子数。这说明核电荷半径数据库中不仅包含了稳定核也包含了远离β稳定线的核的半径数据。本文首先用几个常见的核电荷半径公式拟合最新的核电荷半径实验数据,分析不同公式的优缺点,然后对经验公式进行改进
实现400s长脉冲高约束模式(H模)运行是EAST托卡马克装置主线目标之一,而长脉冲H模运行后期再循环过高导致的密度不可控问题和长脉冲H模运行期间大幅度边界局域模爆发带来的瞬态热负荷问题亟需解决。目前EAST装置采用锂化壁处理有效地控制了再循环,实现了100s长脉冲H模运行,然而在更长时间尺度下所面临的挑战将会急剧增加,进一步细致的研究锂化壁处理对中平面再循环的影响将有益于EAST实现400s长脉
中性束注入(Neutral beam injection,NBI)由于加热效率高、物理机制清楚(可有效外推到大装置)成为磁约束核聚变主要的辅助加热和电流驱动的手段之一。射频源相比较与灯丝源有无灯丝升华污染、免维护的优点,此外负离子在1 Me V下依然有较高的中性化效率,所以射频负离子源在2007年被国际热核聚变实验堆(International Thermonuclear Experimental
Li2TiO3陶瓷小球具有化学稳定性佳,机械强度高,释氚能力强等优点,被认为是未来聚变堆中固态氚增殖包层的理想氚增殖材料之一。目前,国际热核聚变实验堆(ITER)项目中,Li2TiO3被各国广泛选用作为测试包层模块(TBM)的氚增殖材料,具有十分重要的研究意义。为了探究适合作为聚变堆固态包层增殖剂的Li2TiO3陶瓷小球制备方法,本文详细研究了Li2TiO3粉末的溶胶-凝胶法制备方案,Li2TiO
大规模分布式可再生能源接入配电网,改变了传统辐射状配电网的潮流运行情况,引发电压越限、线路损耗严重等问题,对配电网的安全运行造成巨大的影响。传统配电网中常采用无源无功补偿和有源无功补偿装置联合治理配电网的电能质量问题,但受接入成本的影响,越来越难以适应大规模分布式可再生能源接入后引发电能质量问题。本文通过利用分布式电源发电装置的剩余容量,采用无功补偿的方式治理配电网电能质量问题。首先,分析了分布式
随着经济的发展,能源与环境问题日益突出,以绿色环保和节能高效为根本理念的新能源产业的快速发展,促使研究者们探索新能源材料和储能系统。传统的无机电极材料由于价格昂贵,过渡金属不可再生等弊端,无法满足绿色环保的理念,进而促使了新型有机电极材料的开发。与传统无机电极材料相比,新型有机电极材料具有合成方法简单,原料可再生,分子结构设计灵活等优点。因此,设计出高容量,不溶于电解液的新型有机电极材料具有重要的
铁基材料不仅在工业领域有广泛的应用,同时也作为第四代核能系统中结构体的候选材料,因此其在特定环境下的物理性质受到相关研究者的极大关注。研究发现,在核能系统运行的过程中,空气、含一定氧浓度的水和液态金属对结构材料的氧化腐蚀严重影响了材料的物理性能,如材料热导率降低,而且氧化层的脱落会阻塞元器件的通道,影响系统的安全运行。不仅如此,实验发现辐照环境下材料氧化腐蚀更加严重,最直观的表现是氧化层厚度的增加
金属有机框架化合物(MOFs)材料是一种有机-无机杂化材料,具有一系列优点。MOFs材料衍生物是以MOFs材料作为前驱体,制备结构稳定、导电性优异的材料。MOFs衍生的碳材料凭借其较低的成本,较高的稳定性等优点,成为了碱金属电池首选的负极材料。此外,碳包覆的过渡金属氧化物由于其较高的比容量,也引起了广泛注意。本论文研究的内容主要包括:1.通过DFT计算确定了含碳材料中K+插层的最佳层间距。根据理论
电子热输运问题一直是磁约束热核聚变亟待解决的重要难题。电子热输运主要与电子模湍流密切相关,具体包含捕获电子模(TEM)湍流和电子温度梯度模(ETG)湍流。电子模湍流的波长一般大于电子回旋半径,在实验研究中高波数湍流的测量只有少数的诊断能够探测。目前,无论在理论还是实验测量上,我们对电子模湍流的认识仍然非常匮乏。在本文中,我们利用四道CO2激光相干散射诊断系统对EAST托卡马克装置中不同区域、多尺度
多氯代二苯并噻吩(Polychlorinated dibenzothiophenes,PCDTs)是多氯代二苯并呋喃(Polychlorinated dibenzofurans,PCDFs)的硫代结构类似物,在水环境中已普遍存在,且具有潜在的生态风险。然而,目前关于PCDTs在我国淡水流域中的污染水平和空间分布特征,在水生生物体内的生物富集、生物转化和毒性的相关数据欠缺。本论文主要开展以下三方面工