2微米波段硅基行波调制器及探测器设计

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:solomon_bj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
硅基光电集成被认为是高带宽和低功率光互连的理想解决方案,高性能电光调制器和探测器作为互连系统的核心器件,起着转换光电信号的作用,其性能优劣很大程度上决定了系统的整体性能。迄今为止,在通信波段对于互连系统无论分立器件还是系统集成均已实现一定程度的商用化,但是为满足日益增长的容量需求。亟需开展2μm波段光互连的研究以进一步拓展通信容量。本文以硅基光互连分立器件的开发以及2μm光通信新窗口的探索为背景,针对2μm波段硅基调制器与探测器做了详细的设计分析与性能表征。论文综述了电光调制器与探测器的发展趋势及研究现状,介绍了调制器与探测器性能的基本参数。论文分析了载流子耗尽型硅基马赫-曾德尔调制器调制机制,分析了硅基锗探测器与硅探测器工作原理。论文讨论了器件电学结构特性和带宽分析方法,为进一步优化器件设计奠定基础。论文设计了2μm载流子耗尽型单端推挽式硅基调制器,仿真优化了波导有源区的结构参数,改善了损耗和调制效率等指标,给出了波导群折射率和RC常数。构建了行波电极电学特性的设计框架,研究了共面带状线和T型轨道结构电极的工作性能,并针对速度匹配、阻抗匹配、微波损耗三类影响因素对调制器带宽进行优化设计,结果显示,调制器EE 6.4d B带宽为52.2 GHz,EO 3d B带宽为21.7 GHz。在流片机构工艺条件基础上,绘制了GDS版图并通过DRC验证,搭建了静态与高速测试平台对调制器性能予以表征。最终测试结果表明,调制器插入损耗为11d B,调制效率为1.6 V·cm,可实现30 Gbit/s以上的OOK调制和50 Gbit/s的PAM4调制,经过后处理后PAM4调制速率最高可达80 Gbit/s。完成了系统频率响应测试,系统带宽达21 GHz,与仿真结果接近。论文设计了2μm硅基电光探测器,对比分析了探测器在1.55μm和2μm不同波长下光吸收的差异,采用了在硅材料上引入缺陷以提高光吸收的设想,并将响应度提升至0.15 A/W。给出了探测器等效电路模型,分析了影响带宽的主要因素,优化了载流子掺杂分布和探测器长度,计算得到带宽为32 GHz。同时,论文以gain peaking电路模型为基础,通过引入片上电感元件进一步提升带宽,最高可达60GHz以上。根据流片机构Compound Tek提供的工艺条件,绘制了GDS版图,通过了DRC验证并进行流片。
其他文献
随着各行各业数字化进程的不断加速,大规模分布式云存储系统中的数据量持续性爆发增长。针对廉价存储设备的失效问题,云存储系统通常采用编码方案实现修复,保证系统可用性。由于在修复单个故障时,连接节点少、修复磁盘I/O开销低,局部重构码(Local Reconstruction Code,LRC)适应云存储系统需求,已在微软公司Azure等云平台广泛应用。然而,数据呈现多元化发展趋势,热数据在系统中被频繁
说话人识别是根据说话人的语音特征进行身份识别的生物认证技术,具有便捷性、安全性和准确性等优势,目前被广泛应用于国防、金融和公共安全等领域。说话人识别主要由语音特征提取、模式匹配识别两部分组成,其中语音特征提取是整个说话人识别系统的核心,所提取的特征能否充分反映说话人的身份信息将直接关系着整个系统的性能。本文基于语音线性预测分析(Linear Prediction Coding,LPC)生成的残差信
无线通信与电子技术的发展使得小体积、低功耗传感器的应用更加广泛,能够在军事、医疗等领域实现信息采集、数据采集等功能。无线传感器网络由大量随机分布在某一特定领域内的传感器节点组成,具有自组织特性,各节点可协同完成网络覆盖范围内的各类特定任务,如目标追踪、环境监测等。在传统无线传感器网络中,传感器由电池供电。但由于传感器自身的体积尺寸限制,可携带的电池容量有限;尤其在不便于充电或更换电池的应用场景中,
近年来,物联网(Internet of Things,Io T)技术快速发展,在环境监测、智能家居、智慧城市等方面发挥着重要作用,但现有的物联网都是基于基站构建的,基站部署成本较高且抗毁性较差,因而地面物联网有许多的局限性,这些因素导致人们开始寻求其他类型的网络与物联网进行结合,于是卫星物联网的概念被提出。卫星物联网是将地面物联网和低轨卫星星座结合进行数据传输的网络,在这个网络中,大多数时候地面用
空间物联网(Space Internet of Things,S-IoT)是在卫星物联网和地面物联网研究基础上发展并响应我国对于天地一体化信息网络建设的重大信息基础设施。加速发展S-IoT,建设空、天、地、海一体化网络是未来移动通信的必然发展趋势。S-IoT具备广域覆盖特点,能够突破传统地面物联网的局部碎片化网络特征,提供全球无缝覆盖、“随遇接入、按需服务”的接入能力。但是,目前大规模IoT设备的
高动态范围(High Dynamic Range,HDR)图像相对低动态范围(Low Dynamic Range,LDR)图像可以呈现出更丰富的色彩和更多的亮度级别,能够达到计算机图形学及相关行业的要求,满足人们对高质量视觉体验的需求。传统的HDR图像通过合成同一场景多幅不同曝光的LDR图像得到,但是现存的LDR视觉媒体绝大部分只有单曝光版本,因而将包含信息有限的单张LDR转化为具备更多细节信息的
随着移动互联网的迅猛发展,聚焦于超高速、高可靠、低时延等特性的第五代移动通信技术(5G)成为了国内外无线通信领域的研究热点。信道编码技术作为无线通信不可或缺的重要信息传输手段,其性能直接关系到网络覆盖率和用户传输速率的提高。2016年国际移动通信标准化组织3GPP确定Polar码成为5G增强移动宽带(Enhanced Mobile Broadband,e MBB)场景下控制信道的短码标准。作为一个
被动锁模光纤激光器实际上是一个耗散系统,适用于观察各种孤子动力学和非线性现象,并且具有体积小、抗干扰性好、功率高等优势,因此近年来受到广泛的研究。目前主要使用非线性偏振旋转效应(NPR)、八字腔和二维材料锁模、多模光纤混合结构等方式来锁模并实现多孤子输出。本文围绕基于非线性多模干涉效应的被动锁模掺铒、掺镱光纤激光器和NPR效应的锁模掺铒光纤激光器展开了多孤子锁模的研究。本文首先使用三种不同的多模光
图像是人类获取信息的重要载体,科学技术的进步和人类的发展离不开图像的获取。但是图像获取过程并不是理想化的,多种因素的存在使得图像在获取过程中发生退化,对于通过退化后的模糊图像来获得清晰图像这一需求,人们提出了一系列图像复原算法。相比空间域,图像在变换域中能够表现出更多的特性,基于该理论本文的研究从传统的图像复原算法和神经网络图像复原两个角度展开,分别引入小波变换,对算法进行研究以达到更好的图像复原
人口老龄化成为日益严重的社会现象,随之而来的健康问题也越来越受到人们的重视,其中,听力损失问题广泛存在于老年群体中,严重影响患者与外界的沟通能力和生活质量,助听器作为听力损失治疗的首选方案应运而生。助听器的关键技术众多,更符合人耳的听觉感知特性以及更舒适的佩戴体验始终是设计助听器的首要考虑因素。本文从人类听觉感知机理和听力障碍的产生机制开始研究,并基于听力损失患者的听力曲线,提出宽动态压缩算法的设