论文部分内容阅读
在智能交通系统中,基于视频的检测跟踪系统具有易于安装、工作稳定、可视信息丰富和便于实现无人监控的特点,是目前国内外研究的热点。本论文在分析和总结现有的识别与跟踪方法的基础上,对交通监控系统中的运动车辆的识别以及车辆的跟踪问题进行了研究。本文对傅立叶变换、小波变换和Gabor小波变换进行了比较, Gabor变换在分析数字图像中局部区域的频率和方向信息具有优异的性能,在计算机视觉和纹理分割中已经得到了广泛的应用。本文对二维Gabor滤波器的性能进行了分析,设计了一个多通道的Gabor滤波器,对其参数进行了选择,采用多通道的Gabor滤波器对图像的纹理特征进行了提取,用一种特征向量的方法进行描述。本文在分析常用的车型识别方法的基础上,根据车型的纹理分析,提出了一种用Gabor小波提取特征点与BP神经网络算法相结合的分类识别技术。首先对视频图像序列进行采集,采用一种存在运动目标情况下的背景重建算法,获取动态背景并实时更新,能较好地抑制外界环境变化带来的影响。然后用背景差法确定目标位置。为了去除噪声对图像进行中值滤波,最后截取出80×60标准的目标图像。由于不同车型所提取的Gabor特征点的能量值相关度很低,本文以轿车、卡车、面包车和客车车型为例建立了四种标准车型的数据库,最后用提取到目标特征和标准数据库进行匹配。针对易误识的车型,需要进一步细分车型和提高Gabor小波的分辨率,但是Gabor特征点的数据量会大大增加。为了保证系统的实时性,本文在增加Gabor小波分辨尺度的同时,设计了一种神经网络细分类器,对特征点进行了训练识别。实验表明,本文方法不仅系统的识别精度高,而且实时性好。针对传统全模板匹配跟踪计算耗时大的缺点,本文采用了基于Kalman滤波器的跟踪方法。首先利用Kalman滤波器预测车辆在下一帧中的可能位置,然后在预测区域利用Gabor小波特征点进行匹配,精确定位车辆。在车辆目标发生平移、尺度变化等情况下,采用仿射变换模型对目标进行矫正。为了进一步提高跟踪速度,在实验中对提取出的全部特征点进行筛选,选用部分典型特征点与数据库中的标准车型模板进行特征匹配。实验结果显示,本文方法有良好的跟踪效果,并且车辆在短时间被遮挡的情况下也能有效跟踪。