论文部分内容阅读
基于高光谱图像技术对长枣含糖量进行无损检测。由长枣高光谱图像获取反射光谱进行多元散射校正处理,再采用主成分分析获得主成分数据作为BP神经网络的输入变量,建立长枣糖度预测模型。结果表明,采用BP神经网络预测长枣糖度模型优于PLS,模型的相关系数和均方根误差分别为0.9274和1.7125。利用高光谱图像技术对长枣糖度的无损检测是可行的。